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Abstract

Games with multiple equilibria introduce the potential for populations to get stuck in ine�cient

outcomes. In theory, the introduction of additional equilibria, "stepping stones", could pave the way for

a smoother and less risky transition. I run a lab experiment to test if the introduction of these �stepping

stones�, can facilitate transitions from an ine�cient but safe equilibrium to a risky, payo� dominant

equilibrium. I employ di�erent payo�s for the transition strategy and examine the e�ects that di�erent

degrees of information about the game have on group's play. I �nd evidence that adding these "stepping

stones" does help populations transition to the e�cient equilibrium. I also �nd that when groups have

more information about each other's payo�s they are able to transition to the e�cient equilibrium faster

and are less prone to cyclical behavior.
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1 Introduction

As a social species, coordination games are ever present in our lives. From the language we speak, where we

choose to live, to how much e�ort we put into our work, often the best decision depends upon matching the

choices made by those we interact with. Coordination games are characterized by having multiple equilibria

and through repeated play, a convention of a group playing the same equilibrium can be established. However,

not all equilibria are as desirable as others; Once a convention has been established, the transition from one

equilibrium to another, even to one that is a Pareto improvement, is inherently di�cult.1 Consequently,

there is potential for groups to get stuck in conventions of playing equilibria which are payo� dominated.

This potential is what makes the study of variations of the stag hunt game, �rst considered by Jean-Jacques

Rousseau in his Discourse on Inequality in 1755, of considerable interest to economists spanning the gamut

from experimentalists to macro theorists [Cooper and John, 1988, Romer, 1996, Bryant, 1983]. In this paper,

I introduce, experiment with, and examine the e�ectiveness of the addition of a stepping stone equilibrium

crafted to aid the transition from the payo� dominated equilibrium to the Pareto e�cient equilibrium in the

classic stag hunt game.

There is some current research on populations being stuck in ine�cient conventions. Bursztyn et al.

[2023] describes the social media applications of TikTok and Instagram as collective traps. In an experiment

they found that college students would prefer that the products don't exist but because of their popularity

they primarily participate due to "fear of missing out". Thus, they are unwilling to remove the apps unless

others do trapping them in participation while lacking an e�ective intermediary transition pathway. Another

concurrent paper is Gulesci et al. [2023] which examines empirical evidence of female genital cutting practices

in Somalia. Coincidentally also de�nes stepping stones as a transitory state that enables transitions in the

intermediate run. The primary di�erence between my de�nition and theirs is that in their de�nition, stepping

stones are strictly transitory where as I consider conventions, which are self-enforcing, as stepping stones

in stochastic games. Gulesci et al. [2023] examines practice of female genital cutting in Somalia and treats

the norm as a discrete choice problem between three options: a high invasive practice called "Pharaonic",

a milder practice called "Sunna", or no cutting. They �nd that over the past 50 years, Sunna has almost

complete displace Pharaonic circumcision. Yet Sunna seems to be an absorbing state as the proportion of

uncut remains very low. As such, Gulesci et al. [2023] discusses the implications of trying to correct for

harmful norms by creating transitions which may end up being absorbing and creating a new, still not ideal,

1An equilibrium E is a Pareto improvement over another equilibrium E′ if all players weakly prefer E to E′ and at least
one player strictly prefers E to E′.
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norm. With this in mind, my paper is relevant as it establishes a connection between the stepping stone and

the facilitation of easier stochastic transitions in the long run. Consequently, supporting such transitions

leads to monotonically increasing welfare.

A current example of a transition in progress is the question of personal vehicle choice in the United

States. Among a wide range of disadvantages, gas cars tend to produce higher emissions, cost more to

operate, and require more frequent maintenance than their electric counterparts [Malmgren, 2016, Harto,

2020]. However, making the switch from gas to electric can be an unappealing decision for many due to the

dependence on fueling infrastructure and mechanics. In this sense, vehicle choice is a coordination game, as

more people switch to electric, more charging stations are built2. While gas stations are nearly omnipresent,

the relative scarcity of charging stations can make driving certain routes much less e�cient,3 if not impossible

in an electric vehicle. This may explain why in 2018 when passenger vehicles contributed 29% of total US

greenhouse gas emissions, electric vehicles (EVs) only accounted for 2% of US auto sales 4.

Trying to change equilibrium selection in these group coordination games with so much inertia behind

them can be a challenging and expensive task. Continuing with the EV example, in an e�ort to speed

up the transition from gas to electric, the recent In�ation ReductioFiguren Act is estimated to cost over

$14 billion in clean vehicle spending over the next ten years, primarily though EV tax credits 5. Directly

incentivizing the desired strategy should help increase the transition speed to that equilibrium, however, with

how important and costly transitions like these are it is valuable to be as e�cient as possible. Theoretically,

there may be other mechanisms that can help a population transition from one strategy to another that

are more e�cient; If there exists another strategy that provides an easier and faster transition from the

initial equilibrium to the desired state, then the creation or investment in that path may be more e�cient

than directly incentivizing the desired equilibrium. In the case of vehicle choice, the plug-in hybrid vehicle

(PHEV) could be viewed as the strategy to facilitate that transition. The PHEV boasts some of the bene�ts

of EVs, as it has a short electric only range, which is su�cient for most daily tasks, without as many cons,

since it is able to use gas. This position the makes the transition from gas to plug-in relatively easy. If

plug-ins were then widely adopted, that would incentive more charging stations to be built which would

2Firms and the government also build charging stations to help stimulate adaptation, which can be though of as equivalent
in e�ect to a proportion of population adopting the electric choice

3The charging rate in electric batteries decreases as current charge level increases. For example, a Tesla 3 can charge from
0% to 50% in 15 minutes using a Tesla Supercharger, however, it takes an additional 41 minutes to charge it from 50% to 100%
[Ho�man, 2020]. Consequently, the most time e�cient strategy when driving a long route is to only partially charge the battery
at charging stations, thus reducing total time spent charging. However, this method requires su�cient charging station density,
otherwise drivers may have to spend more time charging than what would otherwise be e�cient just to make it to the next
charging station.

4United Auto Workers [2020]
5Congressional Budget O�ce [2022]
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make the full transition to EVs easier. Thus, the inclusion of a PHEV as a strategy theoretically acts as a

stepping stone, a strategy that makes the transition from gas to electric easier.

To examine if stepping stones are e�ective, I design a study to test if stepping stones impact transition

dynamics in group coordination games. In the experiments, subjects played 200 rounds of a stag hunt

coordination game where the group was initiated with starting at the safe, Pareto dominated, equilibrium.

Groups were treated with complete or incomplete information about other's payo�s and group played games

with a high payo� stepping stone, low payo� stepping stone, and no stepping stone (control). Halfway through

the 200 rounds, any stepping stone strategy was removed and players played the no stepping stone game for

the remaining 100 rounds with everyone starting at the safe equilibrium again. The idea being to see if any

treatment e�ects in the �rst 100 rounds would impact play after the treatment is removed, even in the worst

case scenario.

The results of the experiment show that groups were able to transition to and play the e�cient equilibrium

quicker and more often when there was a stepping stone present, providing experimental evidence that a

third equilibrium can speed up the transition from the initial to the e�cient equilibrium. Additionally, the

presence of compete information about the other players payo�s impacted the group's play. When complete

information was present, players more quickly and more brie�y utilized the transition strategy to jump

to the e�cient equilibrium strategy, something they were less willing to do when there was no stepping

stone. However, when players only knew their own payo�s, they frequently used the transition strategy and

through it more slowly arrived at the Pareto e�cient equilibrium. In short, more information about the

game appeared to make individuals more froward-looking. As such, it seems that the mere presence of a

stepping stone may be enough to change behavior, even if the strategy isn't frequently chosen.

Related Literature

There is a large literature focused on experiments addressing the challenge of coordination failures [Devetag

and Ortmann, 2007]. Games like the minimum e�ort game [Van Huyck et al., 1990], are among the most

studied and illustrate that in coordination games even though a Pareto e�cient outcome may be a Nash

equilibrium, it may be di�cult to achieve if it is risk dominated by another equilibrium. While many studies

of the repeated minimum e�ort game have shown that as group size increases, groups are more likely to

exhibit coordination failure [Van Huyck et al., 1990, Knez and Camerer, 1994, Goeree and Holt, 2005, Di

Girolamo and Drouvelis, 2015], the game examined in this paper should be less prone to coordination failure

due to group size since payo�s depend on the full distribution of other player's strategies, not just the
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minimum e�ort level.

There is a small, growing experimental literature studying deviations from myopic best response behavior

in laboratory games. Hwang et al. [2018] examines which convention emerges between �ve strategies in a

bargaining game. They �nd that deviations from myopic best response is payo� dependant as their subject

displayed intentional bias. They suggest that this mechanism leads to the egalitarian solution being the most

likely bargaining norm to evolve. Lim and Neary [2016] studies the behavior of a large population playing

the Language Game of Neary [2012]. They �nd that deviations depend on the myopic best-response payo�

but not on the deviation payo� and that deviations decrease over the rounds played in the experiment. Mäs

and Nax [2016] tests the decisions made in a coordination game when players are in a �xed network as

described by Ellison [1993]. They also �nd that deviations are payo� dependant and that there is evidence

of individual heterogeneity in those deviations. I contribute to this literature by studying a non-competing

coordination game with payo� rankable Nash equilibria.

The idea of intermediate transitions being used to enable a population to move from one state to another

(i.e. the process of biological evolution) can perhaps �rst be attributed to the 19th Century naturalists

Wallace [1858] and Darwin [1859]. 140 years later, Ellison [2000] formalized this idea of step-by-step evolution

in a game theory setting. Here, I give name, stepping stones, to those states that are used to speed up or

enable evolution from an initial state to a latter state.

The games studied here are most similar to those found in Cooper et al. [1990]. Like Cooper, I use a stag

hunt game and expand it to a 3x3 game and investigate how the added strategy might a�ect equilibrium

selection and transition dynamics. However, the games vary as Cooper added a dominated strategy to the

stag hunt game to help solve the coordination failure problem. In addition, in Cooper et al. [1990] players

only played 20 rounds, against each other player twice. Since the added strategy was a dominated one, it is

reasonable to think that as play evolves the frequency that the dominated strategy is played, and along with

it the belief that others would play it, would converge to 0. Thus resulting in the irrelevance of dominated

strategies for equilibrium selection [Kohlberg and Mertens, 1986]. I di�er from Cooper by adding a third

equilibrium to the game instead and examining play in an evolutionary setting against the same players

for 100 rounds. This experiment also di�ers as the game begins with the risk dominant equilibrium as the

established choice.

The remainder of the paper is organized as follows: In the next section I introduce the theoretical

framework and design of the experiment followed by the hypotheses and the procedure. Following that I

report the results of the experiment at the group and individual level. Finally, I provide a summary of the
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results in my concluding remarks.

2 Experiment

In this section I lay out the design for the experiment followed by my hypotheses and then the procedure. The

primary objective of the experiment is to test if and how e�ective transitory equilibria are in coordination

games where players play against the �eld.

2.1 Design

When players make decisions in a game we assume they are best responding to their beliefs about what the

other players in the game will play. Most evolutionary game theory assumes that individuals play the myopic

best response the majority of the time [Kandori et al., 1993, Canning, 1992, Young, 1993]. This translates

to players believing that their opponents will play the same action in the future as they did in the past.

Recent experimental evidence from evolutionary games supports this idea as 90% to 96% of decisions from

those experiments could be explained by myopic best response play [Hwang et al., 2018, Mäs and Nax, 2016,

Lim and Neary, 2016].

Since myopic best response appears to well explain behavior of players in long repeated games, it is

natural to use Young [1993]'s adaptive play model of learning, which is entirely backwards looking, to form

the basis of analysis for evolutionary games. As such, I adapt the theoretical framework from Young [1993]

and Ellison [2000] to �t a repeated game where everyone in a population plays every period and all plays of

that period are observed and recalled by all players in the subsequent period:

2.1.1 Theoretical Framework

Let G be a symmetric w-strategy game. A population of N players repeatedly match with all other players

in the population to play G in every period t > 0. In this environment each player i has a semi-persistent

strategy, si(t) they use to play G every period. In each period, players can attempt to change their strategy

by selecting an action ai(t) ∈ A to play. Since this is a symmetric game, the action sets for all players are

the same. 6 After selecting their action, with probability p their strategy is updated such that si(t) = ai(t).

Otherwise, their strategy remains unchanged from the previous period: si(t) = si(t−1) where si(0) is given.

Each period after players strategies have been determined, G is played N − 1 times, once against every

6Since the stage game has w strategies, it follows that the number of actions in A, |A| is w.
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other player, earning a total period payo� of Π(si(t), s−i(t)) :=
∑
j 6=i

π(si(t), sj(t)) where π(si, sj) is the payo�

player i receives playing against player j in the game G.7

During each period t, each player i observes each other players' last period strategy, s−i(t−1) and responds

by playing the action that maximizes their payo� given the other players strategies remain unchanged:

ai(t) ∈ BRi(s−i(t − 1)) := arg max {Π(ai, s−i(t − 1)) | ai ∈ A}. Such an action choice is referred to as a

myopic best response.

De�nition 1. MYOPIC BEST RESPONSE: A decision that is a best response to the previous period's

strategy pro�le.

However, instead of playing their best response, occasionally players choose an action at random. For

some ε ∈ [0, 1/w), each player randomly selects an action with probability wε. With probability 1 − wε

the player selects an action that is in their set of myopic best responses. Actions that are not myopic best

responses are called "mistakes" and are thus played with probability ε.

Given that only the strategies from the most recent period of play are considered each period, the

probability of advancing to some strategy pro�le in period t + 1, s(t + 1) depends only upon the strategy

pro�le in period t, s(t). Thus, the set of all possible states is equal to the set of strategy pro�les. I refer

to both as S which is equal to the set of action pro�les: S = AN . As such each strategy pro�le is a state

in a discrete-time homogeneous Markov process as detailed by the decision rules above where P εss′ describes

the probability of moving directly from state s in one period to s′ in the subsequent period. Through an

unperturbed process where ε = 0, a self-enforcing pattern of play, called a convention, has the potential to

arise.

De�nition 2. CONVENTION: A convention is a state s such that in the unperturbed process P 0
ss = 1.8

Thus, to escape a convention requires perturbations. As perturbations are assumed to occur infrequently,

the least number of perturbations required to transition from one state to another, known as the resistance,

describes how di�cult the transition is to make.

De�nition 3. RESISTANCE: For any two strategy pro�les s, s′ the resistance r(s, s′) is the number of

perturbations required to make the direct transition from s in one period to s′ in the subsequent period.

Given any two distinct states s, s′, consider all the directed paths that begin with s and end with s′ and

call the collection of those paths Zss′ . Among all such paths, let ζ∗ss′ be the path with the least sum total

7Note that this is a symmetric game so it doesn't matter if a player is the "row player" or the "column player". This payo�
setup is equivalent to one where every player plays once against a randomly drawn opponent and players are risk neutral.

8Since memory is restricted to 1, a strategy pro�le is a strict pure strategy Nash equilibrium if and only if it is a convention.
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resistance for each step along each directed path. Let t be the period the directed path ζ∗ss′ starts such that

s(t) = s and T > t be the period s′ is reached so s(T ) = s′ and de�ne rss′ as the sum total of the resistance

for every step: rss′ =
T−1∑
t
r
(
s(t), s(t+ 1)

)
. Thus, rss′ measures the least amount of perturbations necessary

to transition from s to s′.9

De�ne a recurrent class, E ⊆ S, which has the property rss′ = 0 and rs′s = 0 if and only if s, s′ ∈ E.

In other words, a recurrent class is a closed subset of states that the unperturbed Markov process cannot

escape from once it enters the class. As such, a strict pure strategy Nash equilibrium is by itself a recurrent

class in this setting.

Note that the resistance of the transition between recurrent classes: E1, E2, . . . , EK is largely character-

ized by the di�culty of escaping the basins of attraction D(·) of the initial recurrent class. The following

de�nition is due to Ellison [2000]:

De�nition 4. BASIN OF ATTRACTION: A state s is said to be in the basin of attraction of a recurrent

class E if in an unperturbed process:

s ∈ D(E) := {s ∈ S|Prob(∃T > t s.t. ∀t′ > T s(t′) ∈ E|s(t) = s) = 1}

As such, in order for transitions to occur from recurrent classes E to E′, play must �rst escape the basin

of attraction of E and then make its way into the basin of attraction of E′. This transition may occur in one

step, or play could, for example, move from E to D(E′′) to E′′ then to D(E′) and �nally to E′. If the path

of least resistance doesn't involve a direct transition from D(E) to D(E′) but instead includes transitioning

to some other recurrent class E′′ then I call E′′ a stepping stone from E to E′.

De�nition 5. STEPPING STONE: A stepping stone from one recurrent classes E to another, E′ is a

recurrent class E′′ if the path of least resistance ζ∗ee′ from some e ∈ E to some e′ ∈ E′ includes e′′ ∈ E′′.10

Now construct a directed graph with K vertices, one for each recurrent class. Call the vertex correspond-

ing to the recurrent class Ei vertex i. The weight on the directed edge from vertex i to vertex j is rij . The

tree rooted at vertex i contains K − 1 directed edges such that there is a pathway from each vertex j 6= i to

vertex i. The resistance of each rooted tree is calculated as the sum of weights of the K − 1 directed edges

in the tree.
9Note that s′ does not need to immediately succeed s. It may often be the case where the path of least resistance involves

multiple steps. See an example in Figure 5.
10Note that this de�nition of stepping stone di�ers from that of Gulesci et al. [2023] which examines a stepping stone in an

intermediate run dynamic and de�nes stepping stones strictly as states belonging to a transient class. The de�nition I use is
similar to the step-by-step process used by Ellison [2000] and how using a step-by-step process can a�ect the modi�ed coradius.
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Figure 1: Path of Least Resistance from A to C in two 3x3 Games

No Stepping Stone from A to C B is a Stepping Stone from A to C

In the game on the left there are only 2 recurrent classes: pure strategy equilibria of all A and all C. The path of
least resistance is to in one step move from A to the nearest point in D(C) and then move from D(C) to C with no
added resistance. In the game on the right, the path of least resistance is instead from A to D(B) to B to D(C) to

C.

De�nition 6. STOCHASTIC POTENTIAL: The stochastic potential, γi, of a recurrent class i is the tree

rooted at i with the lowest resistance.

Young [1993] showed that the stochastically stable states are those contained in the recurrent class with

the minimum stochastic potential in the game.

De�nition 7. STOCHASTIC STABILITY: A state s is stochastically stable if s has the smallest stochastic

potential of all states.

Given that the inclusion of a stepping stone E′′ in a game reduces the resistance from E to E′, stepping

stones not only reduce the resistance of directed transitions but may also a�ect the set of stochastically

stable states.

The goal of the experiment is to test if stepping stone equilibria are e�ective as theoretically predicted.

That is to say, that when populations play long repeated games they utilize stepping stones to transition

between conventions. In the next section, I describe how I choose the payo�s in each game played in the

experiment.
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Figure 2: Trees rooted at C

Tree 1 Tree 2 Tree 3

In a game with 3 recurrent classes there are 3 vertices, each with 2 directed edges such that there is a pathway from
each vertex to C. In this example, The resistance of each rooted tree is 4, 6, and 10 for Tree 1, Tree 2 and Tree 3

respectively. As such, the stochastic potential of γC is 4.

2.1.2 Treatment Design

Figure 3: Parameter Selection

Player 2
A B C

Player 1
A aG bG eG
B cG dG gG
C fG hG iG

The game is symmetric and the reported payo�s are those of the row player

I design a lab experiment to test if players utilize stepping stones and if so, if there are certain aspects of

the game that make a stepping stone more e�ective. Of particular interest, I study how the strategy pro�le

of the group evolves when playing a coordination game with Pareto-rankable equilibria when the population

starts the game at a Pareto dominated equilibrium.11 To do this, I use a 2x3 treatment design.

One dimension of the treatment design is selecting the games groups played. Groups of size 8 were asked

to play one of three augmented stag hunt games all of which had groups starting the game playing EA. In

two of the three games (Game 2 and 3), a stepping stone was added to the classic stag hunt game. In Game

2 a stepping stone that payo� dominates the starting equilibrium was added. I will refer to this as the high

payo� stepping stone treatment. In Game 3 I instead add a stepping stone that is payo� dominated by the

starting equilibrium. I will refer to Game 3 as the low payo� stepping stone treatment. The motivation for

11A game with Pareto-rankable equilibria means that at least one equilibrium is preferred by all players in the game to
another equilibrium.
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the di�erent stepping stone levels is to see if payo� dominance in transitions makes a di�erence in group's

play. In the control game (Game 1), groups played without a stepping stone and instead with an added

strategy that guaranteed the worst payo� possible.

On the other dimension of the treatments, I varied the amount of information subjects were given.

Players were given either complete information meaning that they knew both their payo�s and the payo�s

of the other players in the game, or players were given incomplete information meaning they did not know

what payo�s the other players received for a given strategy pro�le. This is important since having common

knowledge that players are playing a coordination game and are starting at an ine�cient equilibrium may

impact player's decisions, presumably by making them more forward looking.

I create a 3× 3 symmetric game with action space {A,B,C} with the payo�s received by the row player

in game G = {1, 2, 3} as depicted in Figure 3 with three pure strategy Nash equilibrium: EA = (A,A),

EB = (B,B), and EC = (C,C) in each game. With 9 payo� variables in each game G, parameters were

chosen to create a large di�erence in the path of least resistance from EA to EC between the game without

a stepping stone, Game 1, and the games with a stepping stone, Games 2 and 3, while observing certain

restrictions, namely:

1. EA and EC must be strict Nash equilibria. Thus, aG > cG, fG; iG > eG, gG ∀G

2. EB must be a strict Nash equilibrium in Games 2 and 3. Thus, di > bi, hi i ∈ {2, 3}

3. EC must be the Pareto E�cient equilibrium. So, iG > aG, dG ∀G

4. The variables aG, eG, fG, iG must remain the same across all games.

5. The resistance from EA to EB must be equal to the resistance from EB to EC in and between Games

2 and 3.12

6. In Game 1 (no stepping stone), b1, c1, d1, g1, h1 must be equal to the lowest payo� in the game.

7. The variables aG and eG must be equal so that Game 1 is essentially a stag hunt game.

8. aG + eG > fG + iG so that EA pairwise risk dominates EC .

9. In Game 2 (high payo� stepping stone), the payo� at the transition equilibrium must be greater than

that at the starting equilibrium d2 > a2.

12By controlling for the resistance between equilibria between and across games I can test for the e�ect of pairwise and global
payo� dominance.

11



10. In Game 3 (low payo� stepping stone), the payo� at the transition equilibrium must be smaller than

that at the starting equilibrium d3 < a3.

11. To make calculations as simple as possible for subjects, all payo�s must be single digit integers.

12. Payo�s must be greater than 0 to avoid behavioral distortions [Tversky and Kahneman, 1991, Gneezy

and Potters, 1997].

In all games EA pairwise risk dominates EC which implies that EA is the stochastically stable equilibrium

in the 2x2 game with just A and C which is the result of Theorem 4.2 in Young [1998]. This dynamic lends

additional justi�cation for initiating the game with everyone playing A.

2.1.3 Games and Theoretical Analysis

Figure 4: Games Played in the Experiment

Game 1

Player 2
A B C

Player 1
A 7 1 7
B 1 1 1
C 1 1 9

Game 2

Player 2
A B C

Player 1
A 7 3 7
B 6 8 4
C 1 7 9

Game 3

Player 2
A B C

Player 1
A 7 1 7
B 6 6 4
C 1 5 9

The games are all symmetric and the reported payo�s are those of the row player

Figure 4 shows the construction of the three di�erent games played in the experiment. All three games

are symmetric with the payo�s reported being those of the row player. In addition, players play against

the �eld meaning they are playing against the full distribution of pure strategies of all other players in the

population. All 3 games are coordination games with 3 pure strategy Nash equilibria on the diagonal. I

will refer to each equilibrium, where all 8 players play the same strategy, as follows: EA = (A,A, . . . , A),

EB = (B,B, . . . , B), EC = (C,C, . . . , C). Game 1 represents the case where there is no stepping stone from

EA to EC . Note that Game 1 is essentially a stag hunt game. I include B as a strategy to increase the

con�dence that any change in play between di�erent games is due to the change in payo�s and not due to a

change in the strategy space of the game. As a bene�t, including B in game 1 guarantees players will receive

the worst possible payo� in the game allow us to test if random errors that don't take into account payo�s

occur.13

13This is assuming that players don't utilize B as a way to punish other players, or in games with incomplete information,
use B to see if that may help other players move from A to C
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The idea of trying to solve the coordination failure problem as seen in stag hunt games with the addition of

another strategy was examined in Cooper et al. [1990]. However, I di�er here by adding a third equilibrium,

a stepping stone, to game 2 and 3 instead of a dominated strategy. Note that Game 3 is constructed by

taking a payo� transformation of Game 2 that preserves the best reply structure, speci�cally by subtracting

the payo� the row player receives when the column player plays B by 2 [Harsanyi et al., 1988]. This

transformation allows me to test what, if any, e�ect payo� dominance for the stepping stone strategy has.

In theory, there shouldn't be any di�erence between individuals whose play is motivated by myopic payo�

di�erences. However, there is reason to believe that player's decisions are also in�uenced by payo� dominance

[Harsanyi et al., 1988, Jagau, 2022].

Resistance Calculations

In order for the added equilibrium, EB , in Games 2 and 3 to be considered a stepping stone from one

equilibrium, EA, to another, EC , the path of least resistance from EA to EC must go through an indirect

path through EB compared to the most e�cient direct path from EA to s ∈ D(EA) to EC .14 Simply stated,

EB is a stepping stone if the resistance from EA to EC is smaller in Games 2 and 3 than Game 1.

Below I calculate the resistance from EA to EC in Games 1, 2, and 3. Refer to Figure 5 for a depiction

of the directed paths of least resistance on a simplex. Note that the graphs depict the mapping of the

strategies of the other players in the group from the perspective of a player who always plays their myopic

best response. This distinction is made since players best respond to the other players' strategies and this

set of strategies will di�er across players if their own strategies are not the same as one another. As such, by

examining the best reply structure of a player who always plays their myopic best response, the minimum

number of "mistakes" necessary to change the myopic best response of some players, and following that, the

entire group is revealed. This is possible because of stochastic strategy updating implemented in this game.

The path of least resistance does not necessarily require transitioning directly from EA to s′ ∈ D(EC). It is

possible to transition from EA to some s ∈ D(EA) then with no further mistakes but with selective stochastic

strategy updating, make the transition directly from s to EC . I elaborate below.

First I will describe the path of least resistance in Game 1, which is also the directed path of least

resistance that travels directly from EA to EC without entering D(EB) in Games 2 and 3. Starting from

EA (1) the transition into D(EC) can be accomplished with the least "mistakes" required by transitioning

14All strict Nash equilibria are recurrent classes in this game.
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Figure 5: Path of Least Resistance from EA to EC in Games 1, 2 and 3

Game 1 Games 2 and 3

Recall: The best reply structure is the same in Games 2 and 3. Because resistance is a count of only non-myopic
best response play (represented by dashed curves), once the game is within the basin of attraction of an equilibrium
D(E), it can travel the rest of the way to that equilibrium using only best response play (represented by solid
curves). Note that the paths are curved only to make following the steps easier to follow. The directed path

accurately mapped onto the simplex is a straight line. The basins of attraction for each recurrent class is color
coded in the simplex: purple for EA, green for EB , and yellow for EC .

to a state where d3(N − 1)/4e15 of the players play C and all other players play A, requiring a minimum

of d3(N − 1)/4e "mistakes". Once in this state, (2), the remaining N − d3(N − 1)/4e players who have

A as their current strategy calculate their expected payo�s for playing against their opponents' last period

strategies. If they play A then their expected payo� is 7(N − 1). If they play C then their expected

payo� is N − 1 − d3(N − 1)/4e + 9d3(N − 1)/4e ≥ 7(N − 1). So they can play C as a best response.

The other d3(N − 1)/4e players whose current strategy is C have A as their unique best response. Since

d3(N − 1)/4e ≥ N/2 it can be shown that the current state is in D(EA). However, it is possible that all

players whose last period strategy was A now play C and their strategies are all stochastically accepted while

all the players last period strategy was A now have their actions stochastically rejected. Hence, EC (3) is

reached. The resistance from EA to EC in Game 1 is therefore d3(N − 1)/4e.

Now I will describe the path of least resistance in Games 2 and 3. Starting from EA (1) the transition to

a state in D(EB) can be made by d(N − 1)/6e players picking B as their action by "mistake" and all those

actions being stochastically accepted. In the next period (2), the players who did not make a mistake get

15The notation dxe means rounding up to the nearest integer that is greater than or equal to x.
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and expected payo� of 7(N −d(N −1)/6e) + 3d(N −1)/6e if they pick A, 6(N −d(N −1)/6e) + 8d(N −1)/6e

if they pick B, and (N−d(N−1)/6e)+7d(N−1)/6e if they pick C. Clearly, the expected payo� for C is less

than B. So B is a best response if 7(N −d(N − 1)/6e) + 3d(N − 1)/6e ≤ 6(N −d(N − 1)/6e) + 8d(N − 1)/6e.

The expression simpli�es to N ≤ 6d(N − 1)/6e, so B is a best response. So play can transition to EB

(3) without any additional "mistakes". Once at EB , the transition to a state (4) in D(EB) can be made

by d(N − 1)/6e players picking C as their action by "mistake" and all those actions being stochastically

accepted. It is simple to calculate, similar as above, that play can then progress with no further "mistakes"

to arrive at EC (5). Hence, the resistance from EA to EC in Games 2 and 3 is 2d(N − 1)/6e.

As such, the directed paths of least resistance using and not using EB can now be compared. If 2d(N −

1)/6e < d3(N − 1)/4e then EB is a stepping stone in Games 2 and 3. It is easy to verify that for all N > 3,

EB is a stepping stone in Games 2 and 3.

In the experiment, groups of size N = 8 were used. As such, EB is a stepping stone in Games 2 and 3. In

all three games, when the game is at EA, the amount of simultaneous deviations from myopic best response

needed to make C a best response for the remaining players in the next period is then d(3/4)∗(N−1)e = 6. In

Games 2 and 3, the resistance from EA to EB as well as the resistance from EB to EC is d(1/6)∗(N−1)e = 2.

Examining the resistance in all three games from EC to EA is d(1/4) ∗ (N − 1)e = 2. In Games 2 and 3,

the resistance from EC to EB and the resistance from EB to EA is d(1/4) ∗ (N − 1)e = 6. This means if

perturbations are independent and payo� independent then if conventions change in Games 2 and 3 they

should travel almost exclusively in the direction from EA to EB to EC to EA et cetera spending on average

equal time at each.16 However, if deviations from myopic best response are a function of payo� dominance

then populations should spend a greater portion of their time at the payo� e�cient equilibrium EC when

cycling or not cycle at all.

In several evolutionary game theory experiments in the literature [Hwang et al., 2018, Mäs and Nax,

2016], subjects were randomly given an opportunity to change their strategy in each round. In the event

they weren't given a revision opportunity, their action from the previous round was retained. This is valuable

from a data collection standpoint as it slows down the transition from one equilibrium to another, which

is where decisions are most important. As discussed in the theory section, in this experiment for all games

and in every round, all subjects will be asked which action they want to play. However, with probability p

their new action is adopted and with probability (1− p) their strategy from the previous round is retained.

In essence, in this experiment I am moving the nature node deciding if they can update their strategy from

16Note that by de�nition just as EB is a stepping stone from EA to EC so too is EC a stepping stone from EB to EA and
EA is a stepping stone from EC to EB .
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before to after the subject makes their decision. This change in procedure yields the bene�t of being able

to collect 1/p times as much data. This procedure is similar to the strategy method [Selten, 1967] which is

often used to boost data collection in extensive form games.

For the experiment trails I use p = 1/2. The bene�t of using a relatively small p value is that it makes

states stickier, thus making equilibria more stable. Additionally, it helps enforce the initial condition of all

the games in the experiment: that the game starts with everyone playing A, corresponding to EA, the safe,

payo� dominated equilibrium. This "stickiness" can be demonstrated by considering a player who uses level-

K thinking [Nagel, 1995, Stahl and Wilson, 1995]. Consider a level-1 player. They assume every other player

plays each strategy with equal probability. So, they expect to face the mixed strategy of (1−p+p/3, p/3, p/3).

Thus, since here I use p = 1/2, their expected payo�s from playing each strategy is (36/7, 1, 11/6) in Game

1, (38/7, 36/7, 20/7) in Game 2, and (36/7, 34/7, 18/7) in Game 3 for each of strategy (A,B,C) respectively.

Thus, A is the unique best response in each game. Level-2 players assume all other players are level-1 players

and thus will also play A. It follows that for all players of level-K > 0 thinking have A as a best response.17

Now consider if p = 1, the case where players are always able to change their strategy. In this case, level

1 thinkers assume they are facing a mixed strategy of (1/3, 1/3, 1/3) which means their expected payo�s

from playing each strategy is (5, 1, 11/3) in Game 1, (17/3, 6, 17/3) in Game 2, and (5, 16/3, 5) in Game 3

for each of strategy (A,B,C) respectively. Thus, in Games 2 and 3, B is their best response when p = 1 as

in this case enforcing that everyone starts the game playing A is little more than a default option [Thaler

and Sunstein, 2008, Samuelson and Zeckhauser, 1988]. This example shows how incorporating stochastic

strategy updating can a�ect decisions and enforce initial conditions.

2.2 Procedure

18 sessions (3 per treatment) of 8 participants each were held in person at the Tattersall Computer Lab

at the University of Oregon. A total of 144 subjects were recruited from the University of Oregon student

population, each of which made 200 decisions over the course of one hour and were paid, on average, $21.

Each participant was seated at a computer with dividers between the monitors and all participants were

seated facing a wall to prevent any in-person interaction or viewing of others' screens. The software used

for the experiment was built using oTree [Chen et al., 2016], which is software using Python, HTML, and

JavaScript designed for use in laboratory and �eld experiments in game theory.

17Note that in the incomplete information treatment players only know their own payo�s so computing the best responses
of other players can not be done reliably, especially at the start of the game.
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The instructions, quiz questions, and screenshots of the UI during the experiment can be found in the

appendix.

Phase I

Upon entering the lab and �lling out consent forms, participants were read aloud instructions explaining

how the game works and how the experiment is conducted. Typed instructions were also be visible on their

computer.18

Phase II

Participants were provided with a writing utensil, a basic calculator, and blank paper to make notes and

calculations if they desired to use them. After reading the instructions, participants took a short quiz

for comprehension to ensure that they understand how the game works and how their payouts would be

calculated. Participants had to answer each question correctly before they could proceed to the following

question. The number of errors made by each participant was tracked.

Phase III

Participants then played the experiment which comprised of two sets of 100 rounds each. During each round,

participants were able to view the payo� they earned in the previous round, the strategies played by the other

participants in the previous round, if their action last round was accepted or rejected, the remaining time

lest in the round, their payo� table, and depending on the treatment of the study, their opponents payo�s

in the payo� table. In each round, participants were be able to change their strategy with probability = .5

otherwise, their previous round strategy was retained. Everyone started the experiment coordinating on A.

In the �rst two rounds of each set, participants had 60 seconds to pick a strategy. In rounds 3-5, participants

had 45 seconds to pick a strategy, In rounds 6-8, participants had 30 seconds to pick a strategy, in rounds

9-11, participants had 20 seconds to pick a strategy, and in rounds 12-200 participants had 10 seconds to

pick a strategy. This shrinking decision time is commonly used in similar evolutionary experiments [Lim and

Neary, 2016, Hwang et al., 2018]. Failure to select a strategy in a round resulted in the player's previous

round strategy being selected for them. The amount of time it took a participant to select their choice in

each round was also recorded.

During the �rst set of 100 rounds, the group played their treatment game (either Game 1, Game 2, or

18I did not read aloud the payo� tables in order to preserve the imperfect information treatment.
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Game 3). After the conclusion of the �rst set of 100 rounds the participants were brought to an screen

informing them of possible changes that were being made to their payo� table for the second set of rounds.

Every group played Game 1 in the second set of rounds. However, the treatment of revealing/concealing the

other players' payo�s was maintained for each group across sets.

2.3 Hypotheses

Hypothesis 1: In the sessions where players play a game where EB is a stepping stone (Games 2 and 3),

the groups will be more successful in making a transition from EA to EC than the sessions where EB is not

a stepping stone (Game 1).

This hypothesis is to test if stepping stone equilibria actually work as predicted: to reduce the

amount of time it takes to transition from EA to EC by creating a path of lower resistance. Under

all arms of the study with a stepping stone, both max(rAB , rBC) and rAB + rBC is less than

the direct transition rAC , meaning transitions from EA to EC are theoretically more probable in

Games 2 and 3 than in Game 1.

Hypothesis 20: In the games with stepping stones (Game 2 and 3), players will spend the same number of

periods with each action as their myopic best response.

Hypothesis 2A: In the games with stepping stones (Game 2 and 3), players will spend a plurality of

the periods played with the action corresponding to the Pareto e�cient equilibrium as their myopic best

response.

As discussed when calculating resistances, since the weight on the directed edges from vertex A

to B, B to C, and C to A are then same when N = 8, if "mistakes" are uniformly random then

each state EA, EB , and EC are stochastically stable. Which means that the adaptive process is

expected to spend an equal time at each equilibrium.

However, if deviations from myopic best response are a. payo� dependant or b. a function of

equilibrium payo� dominance then populations should spend a greater portion of their time near

the Pareto e�cient equilibrium, EC . This is because a. The cost per game played of the �rst

deviation from A to B and B to C is only 1, where as the cost per game played of the �rst
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deviation from C to A is 2.19 The explanation for preference for playing the payo� dominant

equilibrium, b., is self-evident.

Hypothesis 30: The rate of deviations from the myopic best response of A to choosing action B will be no

higher when the stepping stone payo� dominates the starting equilibrium (Game 2 vs Game 3).

Hypothesis 3A: The rate of deviations from the myopic best response of A to choosing action B will be

higher when the stepping stone payo� dominates the starting equilibrium (Game 2 vs Game 3).

The theoretical prediction under uniform random errors is that the transition dynamics of these

games should be identical since the resistance between equilibria are the same in Games 2 and

3. Myopic payo� dependant deviations also produces the same prediction since when comparing

Game 2 to Game 3, the expected payo�s increase by the same amount, depending on how many

other players play B, for all strategies a player can choose from.

However, there is reason to believe the transition speed may be faster in Game 2 than Game 3.

This is because in Game 2 EB payo� dominates EA where EA payo� dominates EB in game 3.

In essence, this hypothesis tests if deviations from a myopic best response towards a stepping

stone are a function of payo� dominance.

Hypothesis 40: Deviations from myopic best response are payo� independent.

Hypothesis 4A: Deviations from myopic best response are payo� dependant and occur less frequently as

the di�erence between expected payo� of the myopic best response and the next highest expected payo�

increases.

Hypothesis 50: Strategy update success will not in�uence rate of deviation from myopic best response.

Hypothesis 5A: Strategy update success will increase rate of deviation from myopic best response.

Although update probability is constant and independent, subjects who recently experienced a

low update success rate may view deviations as riskier behavior.

Hypothesis 60: In Game 1, 1/2 of the "mistakes" made are players choosing action B.

Hypothesis 6A: In Game 1, less than 1/2 of the "mistakes" made are players choosing action B.

19I remind the reader that each player plays the game against all other players in each round.
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This hypothesis is similar to hypothesis 4, but the result is more straightforward since there are

few ways to rationalize playing B in Game 1. If B accounts for signi�cantly less than half of the

"mistakes" then we have evidence that "mistakes" are not uniformly distributed.

Hypothesis 70: The rate of deviations from the myopic best response when the myopic best response does

not correspond to the Pareto e�cient equilibrium will be equal across games with complete information vs

incomplete information.

Hypothesis 7A: The rate of deviations from the myopic best response when the myopic best response

does not correspond to the Pareto e�cient equilibrium will be higher in games with complete information

vs incomplete information.

Under incomplete information, it will take sophisticated subjects time to realize that this is a

coordination game, if in fact they do, and they may never realize that their payo�s align in such

a way that EC is Pareto e�cient and that EB is a stepping stone from EA to EC .

If players have complete information, however, they will immediately know that this is a coordi-

nation game and that EC is an equilibrium and the Pareto e�cient outcome. Consequently, a

deviation from an equilibrium may be viewed by other players as a costly signal towards a new

equilibrium.

If subjects are su�ciently sophisticated, they will realize in Games 2 and 3 that using EB as

a stepping stone is a more e�cient path towards EC than just going directly from EA to EC ,

both in terms of payo� forgone in the transition, and the number of likewise deviations needed

to shift the myopic best response. However, some players may instead view the direct jump as a

faster method of transitioning. In either case, their rate of deviation from myopic best response

when the myopic best response isn't A should be higher than the groups with the incomplete

information treatment.

If this hypothesis is true, then complete information should have an attenuation e�ect of the

amount of time it takes to transition from one equilibrium to the next.
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3 Experimental Results

3.1 Group Level Results

Stepping Stone vs. No Stepping Stone

The primary goal of the experiment was to test if the inclusion of a stepping stone equilibrium was e�ective

in facilitating the transition from the initial equilibrium, to the Pareto e�cient equilibrium. Here I discuss

the �rst set of each experiment during which groups played one of three games for 100 rounds: Game 1

which had no stepping stone, Game 2 which had a high payo� stepping stone, and Game 3 which had a low

payo� stepping stone.

Figure 6 shows the evolution of groups' strategies in the �rst 100 rounds of 6 di�erent sessions, one from

each treatment. If the stepping stones were e�ective in facilitating transitions from A to C then Groups

playing a game with a stepping stone should make it to EC with higher probability and consequently, spend

more rounds playing C.

I �nd that in all 12 sessions where groups played with a stepping stone they were able to, at least once,

make it to EC . By contrast, in the 6 sessions where players played Game 1 in the �rst set, only 4 groups

were able to make it to EC . I test Hypothesis 1 using a 1-sided Fisher's Exact Test which yields a p-value =

0.09804. While this is above the .05 threshold traditionally required to reject that groups are just as likely

to reach EC when playing Game 1, it does support the idea that stepping stones are e�ective as theoretically

predicted.

Beyond the binary of "did a group transition to EC?", the proportion that each strategy was played can

be analyzed. Table 1 reports the proportion that each strategy was played in each experiment. Note that

in 4/6 of the sessions with no stepping stone A accounted for the majority of strategies in set 1. This is in

sharp contrast to the games played with a stepping stone where C made up the plurality of the strategies in

every experiment. I use a mixed logistic regression with clustering at the individual and experiment level,

the results of which can be found in Table 5, which show that players played C in Game 2 and Game 3

signi�cantly more than in Game 1.
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Figure 6: Time Series of Group Strategy in Set 1 (Treatment)

Complete Information Games Incomplete Information Games

These stacked area plots depict how the proportion of each strategy played changed as the round number

increased. The proportion that a strategy was played in a given round is equal to the vertical length with

that strategy's color code. The time series of each set of each experiment can be found in the appendix.

High vs Low Payo� Stepping Stones

I've established that stepping stones were e�ective, here I examine if there was a di�erence in the e�ectiveness

of the low payo� stepping stone compared to the high payo� stepping stone. Looking again at the regression

in Table 5, Game 2 had a point estimate of 1.8157 and Game 3 had a point estimate of .8588. Both with

standard errors approximately .31, this is a large and signi�cant di�erence between the two, indicating that

C is signi�cantly more likely to be played in the sessions with a high payo� stepping stone compared to a

low payo� stepping stone.

Looking at the frequency of strategy played is informative but doesn't provide much insight into the
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frequency with which strategy pro�les were played. Figure 7 does just that. In Figure 7 and Figure 8, I

map the strategy pro�le faced by each player each round onto a simplex, linearly interpolate between the

nearest points to �esh out the graph, then color code by frequency, standardized across plots so they can

be compared. I also report the frequency that each action is a myopic best response (mBR) to the strategy

faced. As can be seen in the Figure 7, play is much more concentrated around EC in the games with a high

payo� stepping stone compared to the games with a low payo� stepping stone. In fact, in the games with a

low payo� stepping stone, A and B were myopic best responses twice as often as they were in games with a

high payo� stepping stone.

Figure 7: Frequency of Strategy Pro�le Faced

Figure 7 illustrates one of Hypothesis 2, which examines whether players in games with stepping stones

(Game 2 and 3) spend the same number of periods with each action as their myopic best response. In the

sessions, players were observed to have as their myopic best response action A 1694 times, action B 1322

times, and action C 6584 times.

I conduct a chi-squared test to see if this di�erence is signi�cant. I get X -squared = 5389.5 with 2 degrees

of freedom, which reveals a highly signi�cant p-value of less than 2.2e−16. This provides strong evidence

which indicates that in Games 2 and 3, players tend to spend more time with C, the action corresponding

to the Pareto e�cient equilibrium as their myopic best response. It is noteworthy that despite the fact that

all three states are stochastically stable under uniform perturbations, players exhibit a preference for the
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Pareto dominant equilibrium.

Complete vs Incomplete Information

Figure 8: Frequency of Strategy Pro�le Faced

When comparing groups that played with a stepping stone with incomplete information to those who

played with a stepping stone with complete information, in aggregate as in Figure 8 the results appear

almost identical. Summary tables 1 and 2 hint towards the biggest di�erence between games played with

complete information vs incomplete information are when there are no stepping stones present. During the

�rst 100 rounds, players played A with the highest frequency every time (n=3) when they played Game 1

with incomplete information. By contrast, in two of the three sessions with complete information, groups

were able to make the transition and play C for the majority of the set. The explanation for this is essentially

that in complete information games players know that they are playing a coordination game and that it is in

the group's best interest to transition to EC . As such, it reasons that groups may have a higher propensity

to play C even if A is the best response as playing C would likely be viewed as a signal that the player wants

to move the group to C and is willing to pay the upfront cost.

It is perhaps because the barrier to transition out of A was so reduced by the stepping stone that there

doesn't appear to be much di�erence between the complete and incomplete information treatments with

stepping stones. In this sense, one could think that stepping stones are particularly useful for attenuating
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the di�culty in coordinating inherent to some environments and populations.

Patterns of Play

There were two primary patterns of group play observed once a group made the transition to C. The group

would then either stay at C for the remainder of the set, or would fall into cyclical behavior of playing

A → B → C → A → . . . until the end of the set. Naturally, those who played Game 1 never fell into the

cyclical behavior since playing B guarantees the worst payo� possible. However, more than that, groups

who played Game 1 and made it to EC were the most stable, perhaps recognizing that getting back to C

would be di�cult if they deviated.

More interestingly, several of the experiment with stepping stones exhibited cyclical behavior. This

occurred most frequently in games with incomplete information and games with a low payo� stepping stone.

There doesn't seem to be a clear reason for why the cyclical process gets initiated, perhaps due to boredom

or competitive behavior.20 However, once the process back to A starts, other subjects are quickly pressured

by the payo�s to transition as well. From A they transition back to C through B. This cyclical behavior

creates a positive feedback loop through players expectations. Players learn that play moves from A to B

to C to A and the stochastic updating probability encourages players to make decisions based on where

they think play is heading least they get left behind and punished. This dynamic should be particularly

pronounced in games with incomplete information as individuals start the game with no basis for strong

prior beliefs as to how their opponents will play. Thus, if they see cycling, they may think they are not

playing a coordination game.

Set 2 Results

After playing 100 rounds of either Game 1, Game 2, or Game 3, all groups played Game 1 (no stepping

stone) for the second set of 100 rounds to see if playing with the stepping stone had any e�ect. For example,

can using stepping stones as a crutch in the short term foster long term coordination in other games between

the same population?

Overall, I do not �nd evidence of correlation between the treatment in the �rst set and the performance

in the second set. Of the eighteen groups, ten of them made it to EC in the second set with three of the

groups having played Game 1 in set 1, four having played Game 2, and three having played Game 3. Four of

the ten groups were playing with complete information and the remaining six with incomplete information.

20Sheremeta [2010] has shown that in contests with a prize of zero some subjects are still willing to bid to "win".
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What appears to be the biggest predictor of success, meaning making it to EC and staying there, is if the

group ended the previous set at EC . Although every groups' strategy pro�le was reset to EA at the start of

set 2, none of the groups who ended set 1 with a strategy pro�le not EC were able to make it to and stay

at EC in the second set. By contrast, of the twelve groups who did end set 1 at EC , eight of them made it

back to and stayed at EC in set 2.

This e�ect was driven by the groups with incomplete information where across all three games, every

group except for one (5/6) that ended at EC in set 1 ended at EC in set 2. Among the three groups with

incomplete information that didn't end set 1 at EC , none of them made it to EC in set 2. This result is

signi�cant under Fisher's Exact Test yielding a p-value of 0.04762.

3.2 Individual Level Results

At the individual level, I am examining the decisions made by each player. In particular, I examine the

rate of myopic best response at di�erent positions in the game and test my remaining hypotheses. Table 3

shows the choices made in each experiment by mBR and table 4 shows the aggregated choices by mBR. As

expected, most frequently subjects played their myopic best response with a few notable exceptions: in 3

treatments action A was selected as a myopic best response less than half the time. This occurred in both

treatments of the high payo� stepping stone game, and in the incomplete information treatment of the low

payo� stepping stone game.

Figure 9: Choices in High Payo� Stepping Stone Games

As discussed in the previous section, these are clear di�erence in play between Games 2 and 3. Recall,

the di�erence between Game 2 and Game 3 is that in Game 2 the row player's payo� increases by 2 when

the column player plays B;21 As a result, in Game 2 EB payo� dominates EA and in Game 3 EA payo�

21and because the game is symmetric, the column player's payo� also increases by 2 when the row player plays B
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Figure 10: Choices in Low Payo� Stepping Stone Games

Figure 11: Choices in Complete Information Games with a Stepping Stone

dominates EB . Since Game 3 is just a payo� transformation of Game 2 that preserves the best reply

structure, theoretically, there shouldn't be any di�erence between individuals whose play is motivated by

myopic payo� di�erences. As such I hypothesised that the biggest di�erence would be in the transition

from A to B as there is evidence that payo� dominance between equilibria plays a role in players' choices

[Harsanyi et al., 1988, Jagau, 2022].

I investigate hypothesis 3 by using a generalized logistic mixed model with individual �xed e�ects to test

if the rate of deviation from the myopic best response of A to choosing action B varies signi�cantly across

Games 2 and 3. See Table 6 for regression results.

The analysis reveals a di�erence between the estimates for Game 2 (intercept) and Game 3. The estimated

di�erence is −0.1030. The p-value associated with this di�erence is 0.697. As result, this test provides no

evidence that the rate of deviations towards the stepping stone are payo� dominance dependant. So I can

not reject the null hypothesis 30.

Figures 9-12 show the proportion of choices made given the strategy pro�le faced in di�erent treatments.
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Figure 12: Choices in Incomplete Information Games with a Stepping Stone

The graphs were constructed in a similar manner to Figures 7 and 8, by linearly interpolating across the

simplex. The groups that played with a high payo� stepping stone or with complete information played

A with much lower frequency than those in incomplete information games and low payo� stepping stone

games. When comparing the high payo� stepping stone to the low payo� stepping stone this result may be

explained by EA Pareto ranking higher in the low payo� stepping stone game.22 On the information side,

the di�erence in play can be explained by the uncertainty that a better outcome is stable and not being

able to observe an e�cient path to achieve it. When there is common knowledge of the game, decisions are

more likely to be interpreted as intentional signals and players are likely to believe that others will want to

transition to C as fast as possible.

Next, I look at what factors in�uence players to deviate from playing their myopic best response. Figure

14 shows the di�erence in myopic best response play between Game 2 and Game 3 and Figure 15 shows

the di�erence in myopic best response play between stepping stone games with complete information vs

incomplete information. Across games and levels of information, when players had C as their best response,

the strategy corresponding to the Pareto e�cient equilibrium, they played their myopic best response 87-91%

of the time, which is inline with the literature examining myopic best response in evolutionary experiments

[Hwang et al., 2018, Mäs and Nax, 2016, Lim and Neary, 2016]. However, when another strategy was a best

response this rate fell dramatically.

This signi�cant drop o� appears to be largely driven by players picking C which partially explains the

di�erence in myopic best response play between when A was the myopic best response and when B was the

myopic best response. This is because, by formulation, the basin of attraction for A can contain many more

players with the strategy C than the basin of attraction for B can.

22EA payo� dominates EB in Game 3.
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I employ a generalized logistic mixed model to examine which factors a�ect the rate of myopic best

response play. I control for the e�ect that di�erent myopic best responses have on the propensity to play those

best responses, as there is a clear di�erence demonstrated in Figure 14. I also control for the game played

and I incorporate clustering at the subject ID level and within the nested experiment number to address

potential correlations within the data. With these controls, I test if there is any signi�cant interaction between

incomplete information and which strategy is the myopic best response, if the di�erence in payo� between

the myopic best response and the next highest myopic payo� (denoted ∆ΠmBR), and if past stochastic

rejection of strategy updating has any e�ect on myopic best response play.

Figure 13: Residual E�ect of Round and Lagged Failed Stochastic Update on Choice = mBR Probability

To account for previous �ndings of Lim and Neary [2016] who found a positive in�uence of the round

number on the rate of myopic best response play, I included it as a control variable. To test the most

appropriate way to model the e�ect of round number on subjects choosing to play their myopic best response

I regress upon the above speci�ed model excluding the independent variables round and lagged stochastic

rejection. I then use the results of the restricted model to predict the probability that subjects will play a

myopic best response and graph the residuals in Figure 13. In Figure 13, the blue points are the average
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residual for each round when the players choice was rejected in the previous round, the average residual when

players' previous choices were accepted are colored goldenrod. There seems to be a non-linear relationship

between the round number and residual value. As such i specify a logarithmic relationship between round

number and propensity to play myopic best response. With this speci�cation, I regress log(Round) and

lag(FailedUpdate) on the residuals of the restricted model to demonstrate the impact of a player's action

being stochastically rejected in the previous round on the rate of myopic best response play. The area around

the best �t line indicate 95% con�dence intervals. Figure 13 clearly shows that players are more likely to

choose to play their myopic best response after failed stochastic update in the previous round.

Given the results of the residual test, I include log(Round) in the full logistic model. The results of the

regression can be found in table 7.

As discussed, The analysis revealed that stochastically rejection had a signi�cant e�ect on the odds that

the myopic best response was selected in the next round with a point estimate of 0.2602 and a p-value

= 1.24 × 10−6. Thus, I rejected hypothesis 50 in favor of hypothesis 5A, indicating that when a player's

action was rejected in the previous round, they are more likely to play the myopic best response in the next

period.

Figure 14: Rate of Myopic Best Response Play by Strategy Pro�le Faced

I also examined whether the likelihood of a subject playing the myopic best response is in�uenced by

the di�erence in expected payo� between the myopic best response and the next highest option. I found a
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signi�cant positive relationship, with a logistic parameter estimate of 0.1287 and a p−value < 2 × 10−16.

Therefore, I rejected hypothesis 40 in favor of hypothesis 4A, suggesting that a larger di�erence in expected

payo� leads to a higher probability of myopic best response play. This result in part explains why the mBR

plots in Figures 14 and 15 are notably dark around the mBR boundaries.

Figure 15: Rate of Myopic Best Response Play by Strategy Pro�le Faced

I also examine Hypothesis 7, which explores whether the rate of deviations from the myopic best response,

speci�cally when the myopic best response does not align with the Pareto e�cient equilibrium, di�ers between

games of complete information and incomplete information. To investigate this, I examine the interaction

terms of myopic best response and incomplete information. The point estimate of 0.7417 with a p-value =

0.000438 indicates that when information is incomplete and the myopic best response is A, subject are much

more likely to play A in games with incomplete information. However, when the myopic best response is B,

the combined point estimate is just 0.199872 and a resulting insigni�cant 1-sided p-value of 0.232. Although I

can not claim that the subjects were statistically more likely to play B when B was the myopic best response

when playing with incomplete information, the combined results do provide signi�cant support to hypothesis

7A. As such, I claim that the likelihood of deviating from the myopic best response is signi�cantly higher

in games with incomplete information when the myopic best response does not correspond to the Pareto

e�cient equilibrium.

Related to my test of Hypothesis 4, I investigate whether the proportion of "mistakes" made by play-
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ers choosing action B in sessions playing Game 1 is signi�cantly lower than 1/2, indicating non-uniform

distribution of mistakes. To test this, I employ a simple binomial test.

In the �rst 100 rounds, there were a total of 606 "mistakes" in sessions playing Game 1. Out of these

mistakes, only 67 were players choosing action B. The binomial test yields compelling results. It allows me

to reject Hypothesis 60 in favor of 6A, as indicated by a p-value of less than 2.2e−16.

4 Concluding Remarks

In this paper I use the theoretical foundations of Young [1993] and Ellison [2000] to de�ne stepping stones, a

recurrent class which reduces the resistance from one recurrent class to another. I then design an experiment

to test if injecting a stepping stone into a stag hunt game helps the group transition to the Pareto e�cient

equilibrium as theoretically predicted. I use a 3 × 2 treatment design varying the amount of information

players receive about the game as well as the game they play and conducted 18 sessions in total, three for

each treatment.

The main results are as follows: First, I �nd that groups that played games with stepping stones were

always able to make the transition to the risky, high payo� equilibrium and ended up playing the strategy

associated with that equilibrium with the highest frequency. By contrast, groups without a stepping stone

occasionally failed to make the transition. I also �nd that in games where the stepping stone payo� dominated

the starting equilibrium, groups were more stable at and ended up playing the Pareto e�cient equilibrium

signi�cantly more than when the starting equilibrium payo� dominated the stepping stone.

Second, in examining the e�ect that information about other players' payo�s had on the game, I found

that the groups who played with complete information were more successful than groups with incomplete

information when playing the stag hunt game with no stepping stone. I attribute this to the common

knowledge that a Pareto improvement exists. However, I �nd that this e�ect disappeared when a stepping

stone was added to the game, presumably because the stepping stone o�ered easy to accomplish transitions

at a low deviation cost.

Finally, I examine how players made decisions in relation to their myopic best response. examining

myopic best response, the decision making mechanism behind adaptive play models. Recent experiments

have found that subjects play their myopic best response 90-96% of the time which provides good support for

using the adaptive learning model in analyzing evolutionary games. In this experiment I �nd that subjects

played their myopic best response 87-91% of the time when their myopic best response corresponded with
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the Pareto e�cient equilibrium which is in line with what's been observed in the literature. I found several

factors that in�uenced subjects propensity to deviate. Like Lim and Neary [2016], I �nd that players are more

likely to deviate from myopic best response in the initial stages of the game and that players were sensitive

to the di�erence in myopic payo�s. Speci�cally, players were less likely to play their myopic best response

when the di�erence in myopic payo�s between that and an alternative strategy was lower. I also found that

the largest factor in determining if a player would play their myopic best response is if their myopic best

response corresponds to the payo� dominant equilibrium, adding support to the theory of Harsanyi et al.

[1988] and results of Jagau [2022]. As such, combining the current data with a payo�-dependent mistakes

model would give more powerful analysis.

I also adapted the stochastic strategy update probability used in experiments like Hwang et al. [2018] by

�rst soliciting players decisions before the stochastic determination. This pseudo-strategy method allowed

me to boost data collection and provided an interesting result. When subjects choices were not accepted in

the previous round they were slightly but signi�cantly less likely to deviate from myopic best response in the

subsequent round. I attribute this to the increased salience that they could get stuck in an ine�cient choice

for multiple rounds. Further testing is required to see if this same e�ect impacts play when the stochastic

determination is made prior to the player's decision.
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5 Appendix

Figure 16: No Stepping Stone & Complete Information Time Series of Group Strategy
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Figure 17: No Stepping Stone & Incomplete Information Time Series of Group Strategy
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Figure 18: High Payo� Stepping Stone & Complete Information Time Series of Group Strategy
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Figure 19: High Payo� Stepping Stone & Incomplete Information Time Series of Group Strategy
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Figure 20: Low Payo� Stepping Stone & Complete Information Time Series of Group Strategy
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Figure 21: Low Payo� Stepping Stone & Incomplete Information Time Series of Group Strategy
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Table 1: Proportion of Strategy A, B, and C Played in Each Session

Game Information #
Set 1: Treatment Set 2: E�ects
A B C A B C

No Stepping
Stone

I
1 0.924 0.021 0.055 0.879 0.021 0.1
2 0.828 0.001 0.171 0.019 0 0.981
3 0.537 0.007 0.455 0.02 0.005 0.975

C
1 0.11 0.009 0.881 0.039 0.004 0.958
2 0.696 0.051 0.252 0.835 0.015 0.15
3 0.072 0.006 0.921 0.843 0 0.158

High Payo�
Stepping Stone

I
1 0.056 0.105 0.839 0.041 0.003 0.956
2 0.159 0.169 0.672 0.89 0 0.11
3 0.018 0.034 0.949 0.036 0 0.964

C
1 0.17 0.075 0.755 0.649 0.051 0.3
2 0.115 0.086 0.799 0.056 0 0.944
3 0.106 0.219 0.675 0.92 0 0.08

Low Payo�
Stepping Stone

I
1 0.166 0.295 0.539 0.494 0.003 0.504
2 0.325 0.204 0.471 0.972 0 0.028
3 0.336 0.138 0.526 0.583 0 0.418

C
1 0.065 0.03 0.905 0.956 0.004 0.04
2 0.298 0.248 0.455 0.415 0.038 0.548
3 0.135 0.205 0.66 0.968 0 0.032

Table 2: Mean Proportion of Strategy A, B, and C Played in Each Treatment

Game Information
Set 1: Treatment Set 2: E�ects
A B C A B C

No Stepping
Stone

I 0.763 0.010 0.227 0.306 0.009 0.685
C 0.293 0.22 0.685 0.572 0.006 0.422

High Payo�
Stepping Stone

I 0.078 0.103 0.82 0.322 0.001 0.677
C 0.13 0.127 0.743 0.542 0.017 0.441

Low Payo�
Stepping Stone

I 0.276 0.212 0.512 0.683 0.001 0.316
C 0.166 0.161 0.673 0.78 0.014 0.207
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Table 3: Choices in each Session by MBR

Game Information # mBR
Set1: Treatment Set 2: E�ects

n A B C n A B C

No Stepping
Stone

I

1
A 800 .93 .02 .05 798 .9 .01 .09
C 0 - - - 2 .5 0 .5

2
A 722 .89 0 .11 30 .13 0 .87
C 78 .03 0 0 770 0 0 1

3
A 496 .86 .01 .13 38 .18 0 .82
C 304 0 0 1 762 0 .01 .99

C

1
A 126 .4 .01 .59 30 .23 0 .77
C 674 .05 0 .95 770 .02 .01 .97

2
A 782 .7 .05 .25 800 .84 .02 .14
C 18 .67 0 .33 0 - - -

3
A 593 .59 .03 .37 800 .82 0 .18
C 714 0 0 1 0 - - -

High Payo�
Stepping Stone

I

1
A 34 .18 .35 .47 62 .4 .02 .58
B 56 .02 .66 .32 - - - -
C 710 .04 .03 .93 738 0 0 1

2
A 152 .38 .11 .51 800 .91 0 .09
B 102 .08 .67 .25 - - - -
C 546 .08 .07 .85 0 - - -

3
A 8 .25 .62 .12 54 .43 0 .57
B 18 .11 .56 .33 - - - -
C 774 .01 .01 .98 746 0 0 1

C

1
A 210 .29 .16 .55 698 .73 .06 .21
B 21 .29 .19 .52 - - - -
C 569 .11 .07 .82 102 .11 0 .89

2
A 100 .52 .16 .32 76 .42 0 .58
B 82 .07 .68 .24 - - - -
C 674 .04 0 .96 724 0 0 1

3
A 62 .5 .19 .31 800 .92 0 .07
B 138 .14 .69 .17 - - - -
C 600 .06 .1 .84 0 - - -

Low Payo�
Stepping Stone

I

1
A 116 .63 .28 .09 446 .87 0 .13
B 256 .04 .79 .17 - - - -
C 428 .1 .02 .88 354 .01 0 .99

2
A 268 .76 .13 .11 800 .98 0 .02
B 175 .06 .74 .19 - - - -
C 357 .1 .02 .87 0 - - -

3
A 316 .69 .12 .18 528 .84 0 .16
B 103 .08 .54 .38 - - - -
C 381 .06 .04 .9 272 .03 0 .97

C

1
A 48 .21 .1 .69 800 .95 0 .05
B 18 .17 .56 .28 - - - -
C 734 .05 .01 .93 0 - - -

2
A 256 .54 .21 .26 498 .64 .04 .32
B 209 .15 .62 .23 - - - -
C 335 .21 .07 .72 302 .04 .02 .94

3
A 124 .38 .16 .46 800 .97 0 .03
B 144 .1 0 .18 - - - -
C 532 .09 .04 .87 0 - - -
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Table 4: Grouped Choices by Treatment

Game Information mBR n A B C

No Stepping
Stone

C A 994 0.65 0.04 0.3
C C 1406 0.03 0 0.96
I A 2018 0.9 0.01 0.09
I C 382 0.01 0 0.99

High Payo�
Stepping Stone

C A 372 0.39 0.16 0.45
C B 241 0.13 0.64 0.22
C C 1787 0.07 0.06 0.87
I A 194 0.34 0.18 0.48
I B 176 0.06 0.65 0.28
I C 2030 0.04 0.03 0.93

Low Payo�
Stepping Stone

C A 428 0.45 0.18 0.36
C B 371 0.13 0.65 0.22
C C 1601 0.1 0.03 0.87
I A 700 0.71 0.15 0.14
I B 534 0.05 0.73 0.22
I C 1166 0.09 0.03 0.88

Table 5: Generalized Logistic Mixed Model: Is C Played More in Game 2 and 3 than Game 1?

Fixed E�ects Estimate Std. Error z value Pr(> |z|)
(Intercept) -0.3045 0.2230 -1.366 0.17202
Game 2 1.8157 0.3147 5.770 7.94× 10−9

Game 3 0.8588 0.3130 2.744 0.00608
Model Information
AIC: 14738.0
BIC: 14775.8
Log Likelihood: -7364.0
Deviance: 14728.0
Residual degrees of freedom: 14395

Table 6: Hypothesis 3 Test: Generalized Logistic Mixed Model Results

Data �ltered to only include observations where mBR = A
Fixed E�ects Estimate Std. Error z value Pr(> |z|)
(Intercept) -1.7481 0.2022 -8.645 < 2× 10−16

Game 3 -0.1030 0.2645 -0.389 0.697
Model Information
AIC: 1448.1
BIC: 1464.4
Log Likelihood: -721.1
Deviance: 1442.1
Residual degrees of freedom: 1691
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Table 7: Hypotheses 4, 5 and 7 Test: Generalized Logistic Mixed Model

mBR is the Dependant Variable
Fixed E�ects Estimate Std. Error z value Pr(> |z|)
(Intercept) -2.359739 0.244356 -9.657 < 2× 10−16

mBR = B 1.200690 0.127741 9.399 < 2× 10−16

mBR = C 2.239175 0.097942 22.862 < 2× 10−16

Incomplete Info 0.741663 0.210947 3.516 0.000438
Game 2 0.097101 0.247757 0.392 0.695116
Game 3 0.168979 0.245713 0.688 0.491637
lag(stochastic rejection) 0.260193 0.053658 4.849 1.24× 10−6

∆ΠmBR 0.110395 0.004179 26.416 < 2× 10−16

log(round) 0.290226 0.029797 9.740 < 2× 10−16

mBR = B:Incomplete Info -0.541791 0.173655 -3.120 0.001809
mBR = C:Incomplete Info -0.582463 0.141303 -4.122 3.75× 10−5

Model Information
AIC: 9536.0
BIC: 9634.3
Log Likelihood: -4755.0
Deviance: 9510.0
Residual degrees of freedom: 14243
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Figure 22: Experiment Instructions (Complete Information)
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Figure 23: Quiz Question 1

Figure 24: Quiz Question 2 (Complete Information Only)
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Figure 25: Quiz Question 3

Figure 26: Quiz Question 4
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Figure 27: Quiz Question 5
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Figure 28: Experiment UI
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Figure 29: Experiment UI
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