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Abstract

Adaptive learning explains how conventions emerge in populations in which players sample a suffi-

ciently small portion of the recent plays and best reply to those samples. We establish that in 2 × 2

coordination games any degree of incomplete sampling is sufficient for a convention to be established

and that the degree of sampling does not affect which conventions are most likely to emerge in the long

run. Thus, the bound that players sample at most half of the plays available to them, which is prevalent

in the large body of work that uses adaptive learning to examine which conventions emerge in a variety

of games, is unnecessarily strict.
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1 Introduction

With over 1000 citations, Young [1993] is a seminal paper in the field of evolutionary game theory. It

introduced a model of learning called adaptive play in which players best respond to a sampled history of play,

but occasionally make mistakes and play an action that is not a best response. The paper established that

in the unperturbed process (i.e., in the absence of mistakes), play will eventually converge to a convention

– a self-enforcing pattern of play in which the same Nash equilibrium is played in each period – if the

sampling in the available history by the players is sufficiently incomplete. Through this backward looking

best response behavior, Young [1993] offers an explanation for how order and norms can spontaneously evolve

in populations. In the perturbed process, it is possible for play to escape a convention and transition to

another one. The number of mistakes that are necessary to move the process from one convention into the

basin of attraction of another convention is the resistance of moving from the former convention to the latter

one, and the stochastically stable conventions – those that require the most mistakes to move from and/or

the fewest to move to – are the most likely to be played in the long run.

The question of what portion of records in memory can be sampled to ensure that adaptive play converges

to a convention, i.e., how little sampling constitutes "sufficiently" incomplete sampling, has remained largely

unaddressed in the literature. In his book Individual Strategy and Social Structure (Young [1998]), Young

expanded upon the foundation he laid in Young [1993], and proved that in 2×2 coordination games adaptive

play converges to a convention if players sample at most half of the records in memory. Young [1998]

acknowledges "We do not claim the bound on incompleteness s/m ≤ 1/2 is the best possible," but to our

knowledge there has been no attempt to identify exactly what degree of incomplete sampling is "sufficient."

Consequently, follow-up work building upon this theory has retained the bound s/m ≤ 1/2.1

In the current paper, we prove that any degree of incomplete sampling is sufficient for the unperturbed

adaptive play process to converge to an equilibrium in 2× 2 coordination games. In addition, we prove that

incomplete sampling is unnecessary in all but some of these games, provided that sample sizes (and thus

memory sizes) are large enough. We also prove that increasing the sample size beyond s/m ≤ 1/2 may result

in increased resistances between conventions, but the increased resistances do not affect which conventions

are stochastically stable when sampling is incomplete (s < m).
1Most recently, Proposition 6.4 of Wallace and Young [2015] simply states that in n-player coordination games "if s/m is

sufficiently small, the [adaptive learning] process converges with probability one to a convention from any initial state."
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2 Adaptive play in 2× 2 coordination games

2.1 2× 2 coordination games

Consider a 2 × 2 game G = (N ;A1, A2;u1, u2) with player set N = {1, 2}, actions sets A1 = {a1, a2} and

A2 = {b1, b2}, and payoff functions ui : A1 × A2 → R (i = 1, 2). The game G is a coordination game

if it has two pure-strategy Nash equilibria on a diagonal, and, without loss of generality, we assume that

(a1, b1) and (a2, b2) are Nash equilibria: u1(a1, b1) ≥ u1(a2, b1) and u2(a1, b1) ≥ u2(a1, b2) (i.e., (a1, b1) is a

Nash equilibrium), and u1(a2, b2) ≥ u1(a1, b2) and u2(a2, b2) ≥ u2(a2, b1) (i.e., (a2, b2) is a Nash equilibrium).

Throughout this paper we also assume that for player 1 either u1(a1, b1) > u1(a2, b1) or u1(a2, b2) > u1(a1, b2)

and for player 2 either u2(a1, b1) > u2(a1, b2) or u2(a2, b2) > u2(a2, b1). These last two conditions are

generically satisfied: they rule out the possibility that one of the players has the same payoff from both

their actions regardless of the action played by the other player, in which case the only distinction between

a player’s two actions is, from their own perspective, the names of the actions. In some of our results, we

will use the requirement that at least one of the two Nash equilibria is strict: either u1(a1, b1) > u1(a2, b1)

and u2(a1, b1) > u2(a1, b2) so that (a1, b1) is strict, or u1(a2, b2) > u1(a1, b2) and u2(a2, b2) > u2(a2, b1) so

that (a2, b2) is strict.

Because each player has only two actions in the game G, every mixed strategy pi of player i ∈ {1, 2} can

be identified by the probability pi(si) with which player i plays one of their actions si (because that leaves

probability 1 − pi(si) that player i plays their other action). Action a1 is a best response by player 1 to a

mixed strategy p2 of player 2 if and only if p2(b1) ≥ u1(a2,b2)−u1(a1,b2)
u1(a1,b1)−u1(a1,b2)−u1(a2,b1)+u1(a2,b2)

. Note that α2 :=

u1(a2,b2)−u1(a1,b2)
u1(a1,b1)−u1(a1,b2)−u1(a2,b1)+u1(a2,b2)

∈ [0, 1] becauseG is a coordination game with Nash equilibria (a1, b1) and

(a2, b2), and either u1(a1, b1) > u1(a2, b1) or u1(a2, b2) > u1(a1, b2).2 Similarly, action b1 is a best response by

player 2 to a mixed strategy p1 of player 1 if and only if p1(a1) ≥ α1 := u2(a2,b2)−u2(a2,b1)
u2(a1,b1)−u2(a2,b1)−u2(a1,b2)+u2(a2,b2)

∈

[0, 1].

2.2 Adaptive play in 2-player games

We study adaptive play [Young, 1993] with memory m and sample size 1 < k ≤ m of the game G, as

explained below.3

For each role (player position) i ∈ N in game G, there is a class of players Ci who can play that role.
2The only possible hick-up is that the denominator could equal 0, but that is ruled out when player 1 has two actions that

differ to them in more than name only.
3Throughout, we use k for the sample size because we already use s for strategies.
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No player can play in more than one role (C1 ∩ C2 = ∅). In each period t, a player is drawn from each

class, and the two players that are drawn play the game G – each player i chooses an action si(t) ∈ Ai

from the actions available to them in their role. The action-tuple s(t) = (s1(t), s2(t)) is recorded and will

be referred to as the play at time t. The history of plays up to and including time t is the ordered vector

h(t) = (s(1), s(2), s(3), ..., s(t)), and the history of the last m plays, called a state, is the ordered vector

h(t|m) = (s(t−m+ 1), s(t−m+ 2), ..., s(t)).

In period t + 1, the player in role i draws a sample Rt+1
i of size k from the m most recent plays

sj(t − m + 1), sj(t − m + 2), . . . , sj(t) by the players in role j 6= i. Player i predicts that the players

in role j play a mixed strategy pj(·|Rt+1
i ) that is the frequency distribution of the actions in the sample

drawn: pj(sj |Rt+1
i ) equals the number of times that action sj occurs in the sample Rt+1

i divided by k,

for each sj ∈ Aj . Player i then plays an action that is a best response to this predicted mixed strategy:

si(t+ 1) ∈ BRi(R
t+1
i ) := argmax {

∑
sj∈Aj

(
pj(sj |Rt+1

i ) · ui(si, sj)
)
| si ∈ Ai}.

The decision making process described above is called unperturbed adaptive play with memory size m

and sample size k. Through an adaptive play process, self-enforcing patterns of play, called conventions, can

emerge.

Definition 1. A convention is a state h(t|m) that consists of m repetitions of the same Nash equilibrium s∗

of the game G.

When a convention is reached in which the Nash equilibrium s∗ is played, then the players can only

sample the others playing their part of s∗ and thus all players have a best response to play their part of s∗.

That means that adaptive play predicts that the players can keep playing s∗ in all subsequent periods. If

the Nash equilibrium s∗ is strict, then the best responses are unique and, without perturbations, the players

will keep playing s∗ indefinitely.

3 Minimally incomplete sampling

Young [1998] proved that in 2× 2 coordination games, unperturbed adaptive play will reach a convention as

long as sampling is sufficiently incomplete. Incomplete sampling means that the players sample only a faction

of the records in memory and in Young [1998] the specific limit for sampling to be "sufficiently" incomplete

is k ≤ m
2 , meaning that players sample at most half of all the records available in memory. We relax this

bound substantially and show that in 2 × 2 coordination games with at least one strict Nash equilibrium,
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any degree of incomplete sampling is sufficient for a convention to eventually be reached, and that in most

of these games sample size equal to memory size (i.e., complete sampling) suffices when the memory size is

large enough.

Lemma 1 will be used in the proofs of Theorems 1, 2 and 3.

Lemma 1. Let G be a 2×2 coordination game and let s∗ = (s∗1, s
∗
2) be a (pure-strategy) Nash equilibrium of

G. Consider unperturbed adaptive play with memory size m and sample size k ≤ m. Let t > m be a period

in which each player i ∈ {1, 2} can play s∗i as a best response to their sampled history, so that there is a

positive probability that the strategy-tuple s∗ is played in period t. Then the convention of playing s∗ can be

reached with positive probability.

Proof of Lemma 1. Using induction, we show that there exists a positive probability that s∗ is played in

periods t through t+m− 1, so that the convention of playing s∗ is reached.

Base Step: By assumption, the strategy-tuple s∗ = (s∗1, s
∗
2) is played with positive probability in period t.

Inductive Step: Let t̂ ≥ t and suppose that it has already been demonstrated that each player i ∈ {1, 2}

can play s∗i as a best response to their sampled history in period t̂, so that there is a positive probability

that the strategy-tuple s∗ is played in period t̂. It will be shown that there is a positive probability that s∗

is played in period t̂+ 1 as part of adaptive play.

For each player i ∈ {1, 2}, let Rt̂
i be a sampled history of player i in period t̂ such that s∗i ∈ BRi(R

t̂
i), and

let si(t̂) = s∗i . Then there is a positive probability that each player i draws a sample Rt̂+1
i that is obtained

by replacing one of the records in Rt̂
i with sj(t̂) = s∗j (j 6= i). If the replaced record is equal to s∗j , then this

does not change the frequency of s∗j in i’s sample, and if the replaced record is not equal to s∗j , then this

increases the frequency of s∗j in i’s sample. If s∗ = (a1, b1), then pj(s∗j |R
t̂+1
i ) ≥ pj(s

∗
j |Rt̂

i) ≥ αj , where the

last step holds because s∗i ∈ BRi(R
t̂
i). Similarly, if s∗ = (a2, b2), then pj(s∗j |R

t̂+1
i ) ≥ pj(s

∗
j |Rt̂

i) ≥ 1− αj . In

both cases, it follows that s∗i ∈ BRi(R
t̂+1
i ).

Therefore, there is a positive probability that s∗ is played in period t̂+ 1 as part of adaptive play.

Conclusion: Using the inductive step m − 1 times, it has thus been shown that there exists a positive

probability that s∗ is played in periods t through t+m− 1, so that the convention of playing s∗ is reached.

�

Lemma 1 exploits the fact that in a 2 × 2 game, when player i’s Nash equilibrium action s∗i is a best

response to the other player j’s mixed strategy, and subsequently, the probability that player j plays s∗j

(weakly) increases, then s∗i is still a best response by player i. Loosely speaking, it seems fairly intuitive that
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when the other player plays their Nash equilibrium action with larger probability, this will increase a player’s

incentive to play their best response to that action. However, this intuition does not extend to larger games

and the statement of the lemma is not necessarily true for such games.4

The result in Lemma 1 allows us to establish that any incomplete sampling, even just by one record, is

sufficient to guarantee that adaptive play converges to a strict Nash equilibrium in 2×2 coordination games.

Theorem 1. Let G be a 2×2 coordination game in which at least one of the two Nash equilibria is strict.

From any initial state, unperturbed adaptive play with memory size m and sample size k < m converges with

probability 1 to a convention corresponding to a strict Nash equilibrium and locks in.

Proof of Theorem 1. In light of Lemma 1, it suffices to demonstrate that there exists a period t > m in

which a strict Nash equilibrium s∗ = (s∗1, s
∗
2) is played with positive probability, because then the convention

of playing s∗ can be reached with positive probability, and once that convention is reached, the players will

keep playing s∗ indefinitely.

Without loss of generality, assume that the Nash equilibrium (a1, b1) is strict. Consider unperturbed

adaptive play with memory size m and sample size k < m starting from an arbitrary initial state. Consider

an arbitrary period t > m and the history h(t) = (s(1), s(2), s(3), ..., s(t)) of plays up to and including time

t. We distinguish three cases.

Case 1. In period t+1 it is possible for the players to draw samples Rt+1
i , i = 1, 2, such that a1 ∈ BR1(R

t+1
1 )

and b1 ∈ BR2(R
t+1
2 ). Then there is a positive probability that s(t+ 1) = (a1, b1).

Case 2. In period t+1 it is possible for the players to draw samples Rt+1
i , i = 1, 2, such that a2 ∈ BR1(R

t+1
1 )

and b2 ∈ BR2(R
t+1
2 ). There is a positive probability that s(t+1) = (a2, b2). If the Nash equilibrium (a2, b2)

is strict, then we have reached a period in which the players play a strict Nash equilibrium.

If the Nash equilibrium (a2, b2) is not strict, then u1(a2, b2) = u1(a1, b2) or u2(a2, b2) = u2(a2, b1) (or

both). Assume, without loss of generality, that u1(a2, b2) = u1(a1, b2) (and u2(a2, b2) ≥ u2(a2, b1)). Then

BR1(R
t+1
1 ) = {a1, a2} and thus a1 ∈ BR1(R

t+1
1 ). Thus, s(t+1) = (a1, b2) is played with positive probability

in the adaptive play process. For the next k−1 periods, regardless of the actions that player 2 plays and the

samples that player 1 draws, player 1 can keep playing s1(t̂) = a1, t̂ = t + 2, . . . , t + k, as a best response.

Then in period t + k + 1, player 2 can draw a sample Rt+k+1
2 from player 1’s actions that consists of k

instances of player 1 playing a1, so that b1 ∈ BR2(R
t+k+1
2 ). Thus, there is a positive probability that

s(t+ k + 1) = (a1, b1).
4Examples are available form the authors upon request.
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Case 3. If in period t + 1 it is not possible for the players to draw samples Rt+1
i , i = 1, 2, such that

si ∈ BRi(R
t+1
i ) for i = 1, 2 and (s1, s2) is a Nash equilibrium of G, then, without loss of generality, assume

that BR1(R
t+1
1 ) = {a1} for all samples that player 1 can draw, and BR2(R

t+1
2 ) = {b2} for all samples that

player 2 can draw, so that s(t+ 1) = (a1, b2).

This implies that in h(t|m) player 2 played b2 at most β2 times, where β2 is the largest number in

{0, 1, . . . , k − 1} that is strictly lower than (1 − α2) × k.5 Similarly, in h(t|m) player 1 played a1 at most

β1 times, where β1 is the largest number in {0, 1, . . . , k − 1} that is strictly lower than α1 × k.6 However,

s(t+1) = (a1, b2), so that the number of times that player 1 (resp. 2) plays action a1 (resp. b2) in h(t+1|m)

is either equal to that in h(t|m) (in case s1(t −m + 1) = a1, resp. s2(t −m + 1) = b2) or one higher. As

long as these numbers do not exceed β1, resp. β2, the players will keep playing s(t̂) = (a1, b2) in periods

t̂ ≥ t + 2. This clearly cannot persist because after m periods the players would only have plays (a1, b2) in

recent memory.

Let t̂ ≥ t+1 be the first period in which either player 1 played a1 more than β1 times in h(t̂|m) or player

2 played b2 more than β2 times in h(t̂|m) (or both). Without loss of generality, assume that player 1 played

β1 instances of a1 in h(t̂− 1|m) and β1+1 instances of a1 in h(t̂|m). Then in period t̂+1, player 2 can draw

a sample Rt̂+1
2 that contains β1 + 1 instances of player 1 playing a1, and play s2(t̂+ 1) = b1 ∈ BR2(R

t̂+1
2 ).

Also, player 2 played at most β2 instances of b2 in h(t̂ − 1|m), and thus at most β2 + 1 instances of b2 in

h(t̂|m). Thus, because k < m, in period t̂ + 1, player 1 can draw a sample Rt̂+1
1 that contains no more

than β2 instances of player 2 playing b2, and play s1(t̂ + 1) = a1 ∈ BR1(R
t̂+1
1 ). Thus, there is a positive

probability that s(t̂+ 1) = (a1, b1).

Conclusion. The three cases we considered are exhaustive and thus we have shown that, starting from

any period t > m and with any history of play at that time, we can find a period in which there is a positive

probability that the players play a strict Nash equilibrium in the adaptive play process with sample size

k < m. Lemma 1 then establishes that the convention of playing that strict Nash equilibrium can be reached

with positive probability, and then the process is locked in. �

Note that in the proof of Theorem 1, there is only one instance in which we use that sampling is incomplete

(k < m), and that is in Case 3, where we need it to guarantee that the adaptive play process cannot get

"stuck" in a situation where both players mis-coordinate in every period, oscillating between (a1, b2) and
5We remind the reader that α2 is the probability such that action a1 is a best response by player 1 to a mixed strategy p2

of player 2 if and only if p2(b1) ≥ α2. Also, because (a1, b1) is a strict Nash equilibrium, α2 < 1, so that (1− α2)× k > 0.
6We remind the reader that α1 is the probability such that action b1 is a best response by player 2 to a mixed strategy p1 of

player 1 if and only if p1(a1) ≥ α1. Note that α1 > 0, because otherwise b1 ∈ BR2(R
t+1
2 ) regardless of the sample that player

2 draws.
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(a2, b1) and necessarily switching actions in exactly the same periods. If the game and sample sizes are such

that this cannot happen anyway, then we do not need sampling to be incomplete at all, and we can have

k = m. We use the notation d·e to denote the ceiling function, which rounds up any real number to the

smallest natural number that is at least as large.7

Theorem 2. Let G be a 2×2 coordination game in which at least one of the two Nash equilibria is strict and

such that α1 6= 1−α2. Let the sample size k be such that dα1×ke 6= d(1−α2)×ke or dα2×ke 6= d(1−α1)×ke.

From any initial state, unperturbed adaptive play with memory size m and sample size k ≤ m converges with

probability 1 to a convention corresponding to a strict Nash equilibrium and locks in.

Proof of Theorem 2. If k < m, then Theorem 1 applies. So, suppose that k = m, i.e, sampling is complete

in the sense that players see all of the past m records.

Consider an adaptive play process with k = m. If in some period t > m the players coordinate, i.e.,

s(t) = (a1, b1) or s(t) = (a2, b2), then we can apply cases 1 or 2 in the proof of Theorem 1 to establish that

there is a positive probability that the players play a strict Nash equilibrium (note that these cases do not

depend on k < m). Lemma 1 then establishes that the convention of playing that strict Nash equilibrium

can be reached with positive probability, and then the process is locked in.

Thus, it remains to consider the possibility that the players mis-coordinate in all periods, i.e., s(t) ∈

{(a1, b2), (a2, b1)} for all t. We will demonstrate that this cannot happen because an implication of the

assumption that dα1×ke 6= d(1−α2)×ke or dα2×ke 6= d(1−α1)×ke is that an adaptive play process with

k = m cannot result in string of mis-coordinated plays s(1), s(2), . . . with s(t) ∈ {(a1, b2), (a2, b1)} for all t.

Without loss of generality assume dα1 ×me 6= d(1−α2)×me. If, in some period t > m, the players observe

a history of play that consists of a string of m instances of (a1, b2) having been played in the previous m

periods, player 2’s unique best response is to play b1 in the next period or player 1’s unique best response

is to play a2 in the next period.8 Thus, any string of mis-coordinated plays that contains a string of more

than m subsequent plays of (a1, b2) cannot be the result of an adaptive play process. Similarly, any string

of mis-coordinated plays that contains a string of more than m subsequent plays of (a2, b1) cannot be the

result of an adaptive play process. We conclude that if the players mis-coordinate in all periods, and they

follow an adaptive play process, then the process needs to switch repeatedly between playing (a1, b2) and

(a2, b1).

For player 1 to switch to playing a2, they need to observe d(1 − α2) ×me instances of player 2 playing
7So, if n is a natural number itself, then dne = n. Also, we include 0 in the set of natural numbers.
8This uses dα1×me 6= d(1−α2)×me, which implies that it cannot be the case that player 1 can best respond by playing a1

and player 2 can best respond by playing b2 after both observe m instances of (a1, b2) having been played.
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b2, and for player 2 to switch to playing b1, they need to observe dα1 ×me instances of player 1 playing a1.

However, in all periods t > m, because k = m, player 1 samples as many records of player 2 playing b2 as

player 2 samples records of player 1 playing a1. Thus, dα1 ×me 6= d(1− α2)×me implies that the players

will not switch from playing (a1, b2) to playing (a2, b1) in the same period when they follow an adaptive play

process. �

The interpretation of the condition α1 6= 1 − α2 in the statement of Theorem 2 is of course that the

smallest probability for player 1 to play a1 such that action b1 is a best response by player 2 is not equal to

the smallest probability for player 2 to play b2 such that action a2 is a best response by player 1. This is a

very weak condition that is generically satisfied. If the game G is such that α1 and 1 − α2 are close, then

the condition that dα1 × ke 6= d(1− α2)× ke or dα2 × ke 6= d(1− α1)× ke will require a large sample size.9

4 Stochastic stability of conventions

4.1 Perturbed adaptive play and resistances

In perturbed adaptive play, in every round players play a best response to their sample Rt
i with probability

1 − ε, and they play a random action with probability ε. Thus, if one of player i’s actions is not a best

response to their sample, then they can still play it by mistake. Allowing for mistakes makes transitions

possible between conventions, even those in which a strict Nash equilibrium is played. Denote by hi, i = 1, 2,

the convention corresponding to the Nash equilibrium (ai, bi), i.e., the state that consists of m repetitions

of (ai, bi). Now consider the transition from hi to hj , i 6= j. The resistance rk,mi,j is the minimum number

of mistakes necessary to make the transition from hi to hj in the perturbed adaptive play process. Young

[1998] shows that when at most half of all records in memory can be sampled (k ≤ m/2), the resistance of

moving from h2 to h1 equals min
(
dα1 × ke, dα2 × ke

)
and the resistance of moving from h1 to h2 equals

min
(
d(1−α1)×ke, d(1−α2)×ke

)
, and the resistances are thus independent of m. However, we demonstrate

below that when sampling is less incomplete (k > m/2), the resistances may be larger and depend on m.

Theorem 3. Consider perturbed adaptive play with memory size m and sample size k ≤ m in a 2 × 2

coordination game G. The resistance of moving from h2 to h1 equals rk,m2,1 = min
{
dα1 × ke, dα2 × ke

}
+

max
{
dα1×ke+ dα2×ke−m, 0

}
and the resistance of moving from h1 to h2 equals rk,m1,2 = min

{
d(1−α1)×

ke, d(1− α2)× ke
}
+max

{
d(1− α1)× ke+ d(1− α2)× ke −m, 0

}
.

9Note that dα1 × ke 6= d(1− α2)× ke does not necessarily imply dα2 × ke 6= d(1− α1)× ke. An illustration of this can be
found in Example 1.
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Proof of Theorem 3. We compute the resistance rk,m2,1 . Similarly to Case 2 in the proof of Theorem 1, we

derive that no mistakes are necessary to move from h2 to h1 if equilibrium (a2, b2) is not strict. In that case,

either α1 = 0 or α2 = 0 or both hold and the expression for rk,m2,1 in the statement of the theorem indeed

produces a resistance equal to 0.

So assume that equilibrium (a2, b2) is strict and let t be a period such that h(t|m) = h2, i.e., the system

is in convention h2. Because (a2, b2) is strict, (a2, b2) will continue to be played if the players do not make

any mistakes. To reach convention h1, it is necessary to reach a period in which both a1 and b1 can be

played as best responses to samples drawn by the players.10 Reaching a period in which both a1 and b1 can

be played as best responses to samples drawn by the players is also a sufficient condition for the process to

reach convention h1 without further mistakes (see Lemma 1). Thus, starting from convention h2, we need to

determine the minimum number of mistakes (which will be positive) necessary to build a length-m history

of play from which both players can draw samples of size k such that a1 and b1 are best responses. For this

condition to be met in some period T , in periods T −m through T − 1 player 1 must have played a1 at least

dα1 × ke times and player 2 must have played b1 at least dα2 × ke times. Clearly, this can be accomplished

by having player 1 make a mistake and play a1 a total of dα1×ke times and having player 2 make a mistake

and play b1 a total of dα2 × ke times in max
{
dα1 × ke, dα2 × ke

}
consecutive periods. This gives an upper

bound of dα1 × ke+ dα2 × ke for rk,m2,1 .

The number of mistakes can be lowered by decreasing the number of periods in which both players

make a mistake, so that players can sample each other’s mistakes and potentially play a1 and/or b1 as best

responses. At the extreme, when sample sizes are sufficiently incomplete so that players can keep sampling

mistakes long enough, it suffices for one player to make enough mistakes to make their action in (a1, b1) a

best response by the other player, and we obtain the lower bound min
{
dα1 × ke, dα2 × ke

}
for rk,m2,1 . We

consider this case first.

Case 1. dα1 × ke+ dα2 × ke ≤ m.11

Starting in period t + 1, suppose player 1 makes dα1 × ke consecutive mistakes and plays a1 in periods

t+1, . . . , t+ dα1×ke. During each of these periods, player 2 can sample no more than dα1×ke−1 instances

of player 1 playing a1 and can only play b2 as a best response.

Because dα1× ke+ dα2× ke ≤ m, in each of the periods t+ dα1× ke+1 through t+ dα1× ke+ dα2× ke,

player 2 can sample all dα1× ke instances of a1 that player 1 played in periods t+1 to t+ dα1× ke and play

b1 as a best response. In these periods, player 1 can sample no more than dα2 × ke − 1 plays of b1 and can
10Note that this is a property that is satisfied by convention h1.
11In this case, derivations are similar to those in Young [1998].

10



only play a2 as a best response.

Play
Period t−m+ 1 . . . t t+ 1 . . . t+ dα1 × ke t+ dα1 × ke+ 1 . . . t+ dα1 × ke+ dα2 × ke t+ dα1 × ke+ dα2 × ke+ 1 . . .
Player 1 a2 a2 a2 a1 a1 a1 a2 a2 a2 a1 a1
Player 2 b2 b2 b2 b2 b2 b2 b1 b1 b1 b1 b1
The color red denotes actions which necessarily are mistakes. Actions colored blue can be played as a best response.

Because dα1 × ke + dα2 × ke ≤ m, in period t + dα1 × ke + dα2 × ke + 1 it is possible for player 2 to

sample all dα1 × ke player 1’s plays of a1 in periods t + 1 through t + dα1 × ke, while player 1 samples all

dα2 × ke player 2’s plays of b1 in periods t + dα1 × ke + 1 through t + dα1 × ke + dα2 × ke. Thus, both a1

and b1 can be played as best responses by the players in period t+ dα1 × ke+ dα2 × ke+ 1 and the process

can reach convention h1 without further mistakes (see Lemma 1).

The process we just described reaches convention h1 from convention h2 with exactly dα1 × ke mistakes

by starting in period t + 1 with player 1 making dα1 × ke consecutive mistakes and playing a1 in periods

t+1, . . . , t+dα1×ke. If instead we start in period t+1 with player 2 making dα2×ke consecutive mistakes and

playing b1 in periods t+1, . . . , t+ dα2× ke, we obtain a process that reaches convention h1 from convention

h2 with exactly dα2 × ke mistakes.

Because either player 1 must have played a1 at least dα1 × ke times to allow player 2 to play b1 as

a best response, or player 2 must have played b1 at least dα2 × ke times to allow player 1 to play a1 as

a best response, the minimum number of mistakes necessary to reach convention h1 from convention h2

equals min
{
dα1 × ke, dα2 × ke

}
. Since (at least) one of the two processes we described reaches convention

h1 from convention h2 with exactly min
{
dα1 × ke, dα2 × ke

}
mistakes, we have demonstrated that rk,m2,1 =

min
{
dα1 × ke, dα2 × ke

}
= min

{
dα1 × ke, dα2 × ke

}
+max

{
dα1 × ke+ dα2 × ke −m, 0

}
.12

Case 2. dα1 × ke+ dα2 × ke > m.

In order to make the transition from h2 to h1, at least dα1× ke plays of b1 and dα2× ke plays of a1 must

occur within m periods. However, dα1 × ke+ dα2 × ke > m implies that in order to achieve this condition,

a1 and b1 must be played in the same period a minimum of ` := dα1 × ke+ dα2 × ke −m times.13 Because

player 1 cannot play a1 as a best response until player 2 has played b1 at least dα2 × ke times, and player 2

cannot play b1 as a best response until player 1 has played a1 at least dα1× ke times, the ` concurrent plays

of a1 and b1 require 2× ` mistakes. Thus, in this case, we need at least an additional ` mistakes compared to

Case 1. We demonstrate that we do not need more than an additional ` mistakes by describing a transition

from h2 to h1 with exactly min
{
dα1 × ke, dα2 × ke

}
+max

{
dα1 × ke+ dα2 × ke −m, 0

}
mistakes.

12Note that when k ≤ m/2, the condition dα1 × ke+ dα2 × ke ≤ m is satisfied regardless of the values of α1 and α2. This is
why in Young [1998] the resistance rk,m2,1 is given as rk2,1 = min

{
dα1 × ke, dα2 × ke

}
.

13Note that ` = dα1 × ke+ dα2 × ke −m ≤ m.
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Starting in period t + 1, suppose player 1 makes dα1 × ke consecutive mistakes and plays a1 in periods

t+1, . . . , t+ dα1×ke. During each of these periods, player 2 can sample no more than dα1×ke−1 instances

of player 1 playing a1 and can only play b2 as a best response. Suppose that in the last ` of these periods,

t+m− dα2 × ke+ 1 through t+ dα1 × ke, player 2 makes ` consecutive mistakes and plays b1.

Play
Period t−m+ 1 . . . t t+ 1 . . . t+m− dα2 × ke t+m− dα2 × ke+ 1 . . . t+ dα1 × ke t+ dα1 × ke+ 1 . . . t+m t+m+ 1 . . .
Player 1 a2 a2 a2 a1 a1 a1 a1 a1 a1 a2 a2 a2 a1 a1
Player 2 b2 b2 b2 b2 b2 b2 b1 b1 b1 b1 b1 b1 b1 b1

The color red denotes actions which necessarily are mistakes. Actions colored blue can be played as a best response.

If dα1× ke = dα2× ke = m, then ` = m and the process described so far has reached convention h1 with

2×m mistakes and this convention cannot be reached from h2 with fewer mistakes. Thus, rk,m2,1 = 2×m =

min
{
dα1 × ke, dα2 × ke

}
+max

{
dα1 × ke+ dα2 × ke −m, 0

}
.

It remains to consider the case when dα1 × ke < m. In that case, in periods t + dα1 × ke + 1 through

t+m, player 2 can sample all dα1 × ke of player 1’s plays of a1 in periods t+ 1 through t+ dα1 × ke, and

play b1 as a best response. Because, by definition of `, m =
(
dα1 × ke − `

)
+ ` +

(
dα2 × ke − `

)
, in these

periods, player 1 can sample no more than dα2 × ke − 1 plays of b1 and can only play a2 as a best response.

In period t + m + 1, it is possible for player 1 to sample all dα2 × ke player 2’s plays of b1 in periods

t +m − dα2 × ke + 1 through t +m, while player 2 samples all dα1 × ke player 1’s plays of a1 in periods

t + 1 through t + dα1 × ke. Thus, both a1 and b1 can be played as best responses by the players in period

t+m+ 1 and the process can reach convention h1 without further mistakes (see Lemma 1).

The process we just described reaches convention h1 from convention h2 with exactly dα1×ke+` mistakes

if α1 ≤ α2. Analogously, we can describe a process that reaches convention h1 from convention h2 with

exactly dα2× ke+ ` mistakes if α2 ≤ α1. Thus, we have identified a process that reaches convention h1 from

convention h2 with exactly the minimum number of mistakes min
{
dα1×ke, dα2×ke

}
+` that we identified as

necessary, and we have demonstrated that rk,m2,1 = min
{
dα1×ke, dα2×ke

}
+max

{
dα1×ke+dα2×ke−m, 0

}
.

Conclusion. We demonstrated that rk,m2,1 = min
{
dα1 × ke, dα2 × ke

}
+max

{
dα1 × ke+ dα2 × ke −m, 0

}
.

The resistance rk,m1,2 is now easily obtained by using 1 − α1 and 1 − α2 instead of α1 and α2, resulting in

rk,m1,2 = min
{
d(1− α1)× ke, d(1− α2)× ke

}
+max

{
d(1− α1)× ke+ d(1− α2)× ke −m, 0

}
. �

4.2 Stochastically stable conventions

The interest in resistances of moving between conventions stems from the fact that, when the probability of

making mistakes (i.e., the degree of perturbation in the process) becomes vanishingly small, the perturbed

adaptive play process converges on the conventions that are hardest to leave and easiest to reach. Such
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conventions are called stochastically stable. In a game with exactly two Nash equilibria, and thus two

conventions, a convention is stochastically stable if and only if the resistance in the transition away from it

is at least as large as the resistance in the transition towards it (see Young [1993]). In the model studied

in Young [1993], sampling is sufficiently incomplete (k ≤ m/2) for the resistances between conventions to

be independent of m, so that stochastic stability of conventions is also independent of m. However, as we

demonstrated in Theorem 3, the resistances may be larger and depend onm when sampling is less incomplete

(k > m/2). This opens up the possibility that the degree of incomplete sampling influences which conventions

are stochastically stable. We turn to this next.

It is known that stochastic stability may change with k due to the ceiling functions even when k ≤ m/2,

and the addedmax{·} component of the resistances can further influence which states are stochastically stable

when k > m/2. Thus, changing the sample size k when memory size m is fixed may change which states are

stochastically stable. However, we demonstrate in Theorem 4 that stochastic stability of conventions does

not change when memory size m is changed while keeping sample size k fixed, as long as m > k. Thus, while

stochastic stability of conventions can be influenced by the sample size, it is not influenced by the degree to

which sampling is incomplete.

Theorem 4. Let G be a 2×2 coordination game. Consider unperturbed adaptive play with fixed sample size

k and memory size m such that sampling is incomplete: m > k. Stochastic stability of conventions does not

depend on memory size m.

Proof of Theorem 4. We distinguish the two exhaustive cases min
{
dα1 × ke, dα2 × ke

}
6= min

{
d(1 −

α1)× ke, d(1−α2)× ke
}
and min

{
dα1× ke, dα2× ke

}
= min

{
d(1−α1)× ke, d(1−α2)× ke

}
. We show that

when k is held fixed, changing m does not affect the comparison between the two resistances rk,m1,2 and rk,m2,1

as long as m > k is maintained.

Case 1. min
{
dα1 × ke, dα2 × ke

}
6= min

{
d(1− α1)× ke, d(1− α2)× ke

}
.

Without loss of generality assume

min
{
dα1 × ke, dα2 × ke

}
< min

{
d(1− α1)× ke, d(1− α2)× ke

}
(1)

Then rk,m2,1 < rk,m1,2 for all m ≥ 2k. We will show that the inequality rk,m2,1 < rk,m1,2 is maintained when m < 2k,

which demonstrates that the comparison between the two resistances is the same for all m ≥ k.14

Using symmetry between players 1 and 2, it follows that we only need to consider one of the cases α1 ≥ α2

14The restriction m > k is not leveraged in this case.
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and α1 ≤ α2. So, let α1 ≥ α2. Then min
{
dα1 × ke, dα2 × ke

}
= dα2 × ke and min

{
d(1 − α1) × ke, d(1 −

α2)× ke
}
= d(1−α1)× ke, so that (1) translates into dα2× ke < d(1−α1)× ke. It follows that α2 < 1−α1

and thus dα1 × ke ≤ d(1− α2)× ke, and subsequently

dα1 × ke+ dα2 × ke < d(1− α1)× ke+ d(1− α2)× ke (2)

Thus, using (1), we obtain rk,m2,1 = min
{
dα1×ke, dα2×ke

}
+max

{
dα1×ke+ dα2×ke−m, 0

}
< min

{
d(1−

α1)× ke, d(1− α2)× ke
}
+max

{
d(1− α1)× ke+ d(1− α2)× ke −m, 0

}
= rk,m1,2 .

Case 2. min
{
dα1 × ke, dα2 × ke

}
= min

{
d(1− α1)× ke, d(1− α2)× ke

}
.

Then rk,m1,2 = rk,m2,1 for all m ≥ 2k. We will show that the equality rk,m2,1 = rk,m1,2 is maintained when

k < m < 2k.

Using symmetry between players 1 and 2, it follows that we only need to consider one of the cases α1 ≥ α2

and α1 ≤ α2. So, let α1 ≥ α2. Then dα2×ke = min
{
dα1×ke, dα2×ke

}
= min

{
d(1−α1)×ke, d(1−α2)×ke

}
=

d(1− α1)× ke.

Using dαi×ke+d(1−αi)×ke ∈ {k, k+1}, i = 1, 2, we derive dα1×ke+dα2×ke = dα1×ke+d(1−α1)×ke ≤

k + 1 and d(1− α1)× ke+ d(1− α2)× ke = dα2 × ke+ d(1− α2)× ke ≤ k + 1. Because both m and k are

natural numbers and k < m it follows that k + 1 ≤ m and thus max
{
dα1 × ke + dα2 × ke −m, 0

}
= 0 =

max
{
d(1− α1)× ke+ d(1− α2)× ke −m, 0

}
.

We can now aggregate and conclude rk,m2,1 = min
{
dα1×ke, dα2×ke

}
+max

{
dα1×ke+dα2×ke−m, 0

}
=

min
{
d(1− α1)× ke, d(1− α2)× ke

}
+max

{
d(1− α1)× ke+ d(1− α2)× ke −m, 0

}
= rk,m1,2 .

Conclusion. We have demonstrated that when k is held fixed, changingm does not affect the comparison

between the two resistances rk,m1,2 and rk,m2,1 as long as m > k is maintained. Because stochastic stability

of conventions is determined by the comparisons between these two resistances, it follows that stochastic

stability of conventions does not depend on memory size m. �

Examination of the proof of Theorem 4 reveals that when only one of the conventions is stochastically

stable for large m (m ≥ 2k), we do not need any incomplete sampling to obtain the result that stochastic

stability of conventions does not depend on memory size m. The following example shows that when both

conventions h1 and h2 are stochastically stable for large m, decreasing memory size to m = k may render

one of the conventions no longer stochastically stable.
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Example 1. Consider the 2× 2 coordination game

Player 2

b1 b2

Player 1
a1 10, 11 0, 0

a2 0, 1 10, 10

Suppose that k = 10 and consider the resistances between h1 and h2. Note that in this game α1 = 9/20

and α2 = 1/2. We compute dα1 × ke = dα2 × ke = d(1− α2)× ke = 5 and d(1− α1)× ke = 6.

When m > k = 10, the resistances between h1 and h2 are rk,m1,2 = rk,m2,1 = 5, and both conventions h1 and

h2 are stochastically stable.

However, when m = k = 10, the resistance of moving from h1 to h2 increases to rk,m1,2 = 6 while the

resistance of moving from h2 to h1 remains unchanged at rk,m2,1 = 5. Thus, only convention h1 is stochastically

stable.

Theorem 4 and Example 1 show that making sampling more complete by decreasing memory size can

only affect the stochastic stability of conventions in the extreme case that memory size and sample size

are equal, and only when the sample size is such that both conventions are stochastically stable under

incomplete sampling. In that case, it is possible that one of the conventions is no longer stochastically stable

when all records in memory are sampled. We conclude that in 2× 2 coordination games, the only bound on

the incompleteness of sampling necessary to determine which conventions are stochastically stable is that

sampling is incomplete at all, i.e. k < m.

5 Conclusion

Young’s model of adaptive play and the stochastically stability of conventions have been studied and applied

to a wide variety of games. However, the question of precisely what degree of incomplete sampling is

necessary to guarantee convergence to a convention has remained unaddressed. We examined this issue in

2 × 2 coordination games with at least one strict Nash equilibrium. We proved that for all these games

the unperturbed adaptive play process converges to a convention for any degree of incomplete sampling,

and that for almost all games complete sampling also guarantees convergence to a convention provided that

sample sizes are large enough.

We then turned to the question whether the degree of incompleteness of the sampling influences which
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conventions are stochastically stable when the adaptive play process is perturbed. We derived that sample

sizes larger than half of the records in memory may result in larger resistances between conventions than

smaller sample sizes. However, increasing the sampled proportion of records in memory by decreasing

memory size while keeping sample sizes fixed, does not change which conventions are stochastically stable

as long as memory size remains strictly larger than the sample size so that sampling is not complete. When

memory size is decreased to equal the sample size, and sampling is thus complete, it is possible that one of the

conventions is rendered not stochastically stable for some games in which both conventions are stochastically

stable when sampling is incomplete.
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