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Abstract

This paper studies a preference evolution model in which a population of agents

are matched to play a sequential prisoner’s dilemma in an incomplete information en-

vironment. An institution can design an incentive-compatible screening scheme, such

as a special zone that requires an entry fee, or a costly label for purchase, to segre-

gate the conditional cooperators from the non-cooperators. We show that institutional

intervention of this sort can help the conditional cooperators to prevail when the psy-

chological benefit of cooperating for them is sufficiently strong and the membership of

the special zone or the label is inheritable with a sufficiently high probability.
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1 Introduction

Conditional cooperation has interested researchers across various disciplines for decades

[Ostrom, 2000]. Human-subject experiments [Fischbacher et al., 2001, Fischbacher and

Gächter, 2010, and many others] have provided ample evidence for the existence of con-

ditional cooperation. It refers to the phenomenon that people cooperate in dilemma situ-

ations only when they believe that others also cooperate. Conditional cooperation can be

explained by people’s other regarding preferences such as reciprocal preferences [Rabin, 1993,

Dufwenberg and Kirchsteiger, 2004].

Initiated by Güth and Yaari [1992] and Güth [1995], the indirect evolutionary approach

has become a workhorse model for studying the evolution of other-regarding social prefer-

ences [see Alger and Weibull, 2019, for a survey]. It assumes that evolution takes place at

the preference level. Preferences determine behavior, which affects people’s material payoffs.

Material payoffs in turn determine the evolution of preferences. The indirect evolutionary

approach thus offers a way to understand the evolutionary roots of various behavioral level

phenomena, including conditional cooperation, from the preference level. In particular, Güth

and Kliemt [1998] propose a model on the evolution of trustworthiness and show that its

survival must be accompanied by conditional cooperation. When preferences are observable,

the trustworthy type prevail in the long run because the trustworthy agents only cooperate

when their opponents are trustworthy. In this case, the trustworthy agents act as condi-

tional cooperators. However, when preferences are not observable, the share of trustworthy

people is bound to decline because they can no longer behave differently accordingly to their

opponents’ types.

It is desirable for the conditional cooperators to differentiate themselves from the non-

cooperators. This not only enables the conditional cooperators to behave differently when

matching with different opponents, but also allows them to match only with other conditional

cooperators. How can they achieve this when preferences are not observable? In this paper,

we consider a potential solution: institutional screening. Institutional screening has been

explored in the context of religion. For example, Iannaccone [1992] and Carvalho and Sacks

[2021], among others, theoretically show how religious groups can use specific traits and

rituals to screen out non-believers. The idea that institution can foster cooperation in

dilemma situations can be traced back to Thomas Hobbes’ Leviathan. We assume that

a society consists of a population of people, including conditional cooperators and non-

cooperators who are driven by different preferences, and an institution. Following Bisin

and Verdier [2021], we conceptualize the institution as a mechanism through which social

choices are delineated and implemented. This view on institutions is in line with [North,

1981, 1990, David, 1994, Grief, 2006]. If differentiating the conditional cooperators from
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the non-cooperators serves the institutional goal, the institution may want to implement

some screening mechanism to achieve it. For example, the institution can set up a special

zone that requires entry fee or create an artificial label for people to purchase. The entry

fee to the special zone or the cost of label should be designed in an incentive compatible

way so that only the conditional cooperators are willing to pay for it. We show that such

an entry fee/cost exists, which helps segregating the conditional cooperators from the non-

cooperators. We show that whether the conditional cooperators can prevail in the long

run depends on two critical features. First, the psychological benefit of cooperating for the

conditional cooperators is sufficiently high, which guarantees that the institution always has

an incentive to implement a screening scheme. Second, the membership of the special zone

or the label is inheritable to a sufficiently high degree. That is to say that descendants of

those with a membership face a lower membership cost than those whose parents were not

members themselves. For example, assume the special zone is an island. Descendants of

the special zone will be born on the island and wouldn’t have to pay transportation costs

to get to the special zone, thus reducing the effective membership cost. This discounted

cost lowers the burden of future generations of conditional cooperators which is necessary to

ensure their relative material payoffs remain competitive with the rest of the population.

This paper considers endogenous matching as opposed to the majority of the indirect evo-

lutionary approach literature which considers exogenously random matching. A few papers

consider matching being determined by institutions or democratic processes in the com-

plete information environment [Rigos and Nax, 2016, Wu, 2016, 2022]. We instead consider

the role of institutions in determining matching in the incomplete information environment.

Since the institutions cannot directly manipulate the matching patterns in the incomplete

information environment, we utilize the concept of stable matching to describe how agents

are matched after the screening stage. Wu [2021], Hiller et al. [2022] and Wang and Wu

[2022] are a few recent attempts to introduce stable matching to evolutionary models.

The paper is organized as follows. Section 2 lays out the setting of the model. Section 3

first re-illustrates the classic results without institutional intervention, then considers both

a myopic and a forward-looking institution. Section 4 concludes.

2 The Model

2.1 Basic Setup

Consider a continuous population of agents of two preference types: θ and τ . The

amount of θ-type agents is x > 0 and the amount of τ -type agent is y > 0. (x, y) denote the
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population state. The agents are randomly matched in pairs to play a one-shot sequential

prisoner’s dilemma game as shown in Figure 1. In each pair, each agent takes the role of

player 1 with probability 0.5 independent of their types.

Figure 1: A sequential prisoner’s dilemma game with material payoffs

In the game, each agent has two actions: {C,D}. The game generates material payoffs

for the agents. The material payoff function is given by π(·, ·) : {C,D}2 → R, which satisfies

π(D,C) > π(C,C) > π(D,D) > π(C,D), the standard criterion for a prisoner’s dilemma.

The τ -type agents’ have materialistic preferences, that is, their preferences can be represented

by the material payoff function. The τ -type agents always choose D as player 2, as it is their

strictly dominant strategy. Hence, the τ -type agent can be regarded as non-cooperators.

A θ-type agent’s preferences are represented by the utility function Uθ(·, ·) : {C,D}2 → R.

The utility function satisfies Uθ(C,C) = π(C,C) + α, where α > π(D,C) − π(C,C); and

Uθ(s, s
′) = π(s, s′), for (s, s′) 6= (C,C). In words, a θ-type agent gains an extra psychological

benefit of α only when choosing C against another agent choosing C. Given the condition

imposed on α, a θ-type agent as player 2 would choose C upon observing that player 1

chooses C, and she would chooses D upon observing that player 1 chooses D. Hence, the

θ-type agents can be regarded as conditional cooperators.

2.2 Evolution

We first add time index to the population state: (xt, yt) denotes the population state

at time t ∈ N (assume that x0 > 0 and y0 > 0). Let Fθ(xt, yt) and Fτ (xt, yt) denote the

average material payoffs of the θ-type agents and the τ -type agents at time t, respectively.

We also define Ūθ(xt, yt) and Ūτ (xt, yt) as the average utility of the θ-type agents and the

τ -type agents at time t, respectively.
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Table 1: Subgame perfect equilibria under complete information

Player 1 Player 2 SPE
θ θ (C, (C,D))
θ τ (D, (D,D))
τ θ (C, (C,D))
τ τ (D, (D,D))

The population evolves across generations over time. The average material payoff of a

type determines the reproductive rate of the agents of that type. Importantly, the evolution

is governed by the comparison of material payoffs instead of utilities. When the average

material payoff of the θ-type agents is higher than that of the τ -type agents in the current

generation, the θ group grows faster than the τ group. The following model describes the

evolutionary process:

xt+1 = xtFθ(xt, yt), (1)

yt+1 = ytFτ (xt, yt). (2)

Definition 1 We say θ-type (respectively, τ -type) dominates the population as t approaches

infinity. when we have limt→∞ xt/yt = ∞ (respectively, limt→∞ yt/xt = ∞.) We say the

population reaches a steady state at time t if all agents in the population have the same re-

production rate from t on, this requires Fθ(xt+k, yt+k) = Fτ (xt+k, yt+k) = c, for some constant

c > 0 and any integer k ≥ 0.

3 Analysis

3.1 Complete Information

In this section, we consider the benchmark case with complete information. That is,

the agents’ types are observable. In line with the literature on the indirect evolutionary

approach, we first assume that agents in the population are uniformly randomly matched.

Table 1 summarizes all the subgame perfect equilibria (SPEs). One can observe that the

equilibrium predictions depend solely on player 2’s type. When player 2 is a conditional

cooperator (θ-type), both players would choose C in equilibrium; when player 2 is a non-

cooperator (τ -type), both players would choose D in equilibrium.

The average material payoffs of the two types are given by:
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Fθ(xt, yt) =
xt

xt + yt
π(C,C) +

yt
xt + yt

(
1

2
π(D,D) +

1

2
π(C,C)), (3)

Fτ (xt) =
xt

xt + yt
(
1

2
π(C,C) +

1

2
π(D,D)) +

yt
xt + yt

π(D,D). (4)

Since π(C,C) > π(D,D), we have Fθ(xt, yt) > Fτ (xt, yt) for xt > 0, implying that θ-type

dominates the population as t approaches infinity for any initial condition (x0, y0). The

rationale is that a conditional cooperator always cooperates with another conditional coop-

erator regardless of her role, but only cooperates with a non-cooperator when she is player

2. This makes sure that the conditional cooperators grab the benefit of cooperation among

themselves and at the same time protect themselves from the non-cooperators’ exploitation.

Since the types are observable, it is reasonable to assume that the agents can match

voluntarily with those they prefer to match with. To capture this idea, we introduce the

notion of stable matching.

A matching configuration is a vector µ(xt, yt) = (µa,b(xt, yt)), where µa,b(xt, yt) denotes

the amount of type-a agents that are matched with type-b agents, with a, b ∈ {θ, τ} that

satisfies the following requirements.

µθ,θ(xt, yt) + µθ,τ (xt, yt) = xt, µτ,θ(xt, yt) + µτ,τ (xt, yt) = yt,

and µθ,τ (xt, yt) = µτ,θ(xt, yt). (5)

We assume that the agents will reach a stable matching within each time period before

they play the prisoner’s dilemma. Since we are looking at a continuous population with finite

types, we adopt the definition of stable matching for aggregate matching from Echenique

et al. [2013] to our context, which serves as a natural generalization of the stability concept

by Gale and Shapley [1962]. Let K(a, b) : {θ, τ}2 → R denote the expected equilibrium

utility of a type-a agent against a type-b agent.

Definition 2 A pair of types (a, b), with a, b ∈ {θ, τ}, is a blocking pair for µ(xt, yt) if for

c 6= a, d 6= b and c, d ∈ {θ, τ}, we have K(a, b) > K(a, d), K(b, a) > K(b, c), µa,d(xt, yt) > 0

and µb,c(xt, yt) > 0. A matching configuration µ(xt, yt) is stable if there are no blocking

pairs for µ(xt, yt).

We will see that perfectly assortative matching (all θ-type agents are matched with one

another, and all τ -type agents are matched with one another) is the unique stable matching

as shown in Lemma 1:

Lemma 1 The unique stable matching is µθ,θ(xt, yt) = xt, µτ,τ (xt, yt) = yt.
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Given that the agents are perfectly segregated through matching, the average mate-

rial payoffs of the two types are given by Fθ(xt) = π(C,C) and Fτ (xt) = π(D,D). Since

π(C,C) > π(D,D), we have Fθ(xt, yt) > Fτ (xt, yt) for xt > 0, implying that θ-type dominates

the population as t approaches infinity for any initial condition (x0, y0). Hence, through en-

dogenous matching, conditional cooperators can completely shut themselves from matching

with non-cooperators, ensuring their prevalence in the long run.

3.2 Incomplete Information

In this section, we consider the case with incomplete information. That is, the agents’

types are not observable. In this case, since the agents cannot identify the types of others,

they cannot discriminate between whom they match with. Hence, matching is uniformly

random. We assume that the population state is common knowledge for the agents and the

agents play a perfect Bayesian equilibrium (PBE) with one another after they are matched.

First observe that in any PBE, a τ -type agent would always choose her strictly dominant

strategy D as player 2, and a θ-type agent as player 2 would choose C upon observing

that player 1 chooses C, and she would chooses D upon observing that player 1 chooses

D. Lemma 2 summarizes the choices made by player 1 in PBEs. We do not consider the

possibility that the agents play mixed strategies. Hence, to break ties, we assume that the

agents choose C whenever they are indifferent between choosing C and D.

Lemma 2 Under incomplete information,

(1) When xt
xt+yt

≥ ∆θ := π(D,D)−π(C,D)
π(C,C)+α−π(C,D)

, a θ-type player 1 chooses C in PBE. Otherwise,

she chooses D in PBE.

(2) When xt
xt+yt

≥ ∆τ := π(D,D)−π(C,D)
π(C,C)−π(C,D)

, a τ -type player 1 chooses C in PBE. Otherwise,

she chooses D in PBE.

Lemma 2 which characterizes player 1’s decision is illustrated by Figure 2.

Given Lemma 2, we can characterize the long-run prediction of the evolutionary process

of preferences:

Proposition 1 Under incomplete information, a steady state population is characterized by
xt

xt+yt
∈ (0,∆θ).

The relationship between the average realized material payoffs by each type and the

evolution of the population composition are depicted in graph (a) and (b) respectively in

Figure 3.
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Figure 2: Player 1’s expected utility for each strategy

Note that it is always the case that 0 < ∆θ < ∆τ < 1. Where ∆X is the minimum proportion of conditional
cooperators in the population required to make the expected utility of playing C as the first player at least
as high as the utility received from playing D for player type X.

Proposition 1 shows that under incomplete information, the conditional cooperators can

no longer dominate the entire society in the long run because they are not able to protect

themselves from non-cooperators’ exploitation. Nevertheless, they can still co-exist with the

non-cooperators when their group size is sufficiently small so that they choose to defect as

the non-cooperators. Note that the set [0,∆θ) shrinks as α increases. In other words, a

stronger psychological benefit of conditional cooperation makes the conditional cooperators

more vulnerable in evolution. Note importantly, the results obtained in this section are

merely the reminiscence of the results of Güth and Kliemt [1998]’s analysis on trust games.

3.3 Institutional Screening

In this section, we introduce an institution to the society. The institution is characterized

by the utilitarian social welfare function:

W util(xt, yt) = xtŪθ(xt, yt) + ytŪτ (xt, yt), (6)
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Figure 3: Evolution of Types under Incomplete Information

(a) Material Payoffs Realized for Each Type

(b) Evolutionary Paths

When xt

xt+yt
≥ ∆θ the average material payoffs (a) are always greater for τ types than θ types. This results

in the proportion of θ types in the population ( xt

xt+yt
) decreasing until the level is below ∆θ. This dynamic

can be seen in plot (b). When xt

xt+yt
< ∆θ both types get the same average material payoff and so a steady

state is realized.

which is the total utility of the population in the current period. The institution aims to

maximize the social welfare function by affecting the matching outcome. Since agents’ types

are unobservable, the institution cannot directly match agents according to their types.

Hence, the institution may want to implement certain screening scheme to isolate different

types of agents if differentiating them increases social welfare. Note that we assume the

institution is short sighted as it only cares about the social welfare of the population in the

current period. We believe that this assumption is reasonable because policy cycles often

have a much shorter duration than a single generation.

To differentiate different types of agents, the institution can set up a special zone that

requires an entry fee. The entry fee should be set in way that only the conditional cooperators

would enter. Alternatively, the institution can create a costly label such that only the

conditional cooperators are willing to pay for having the label. If the screening scheme

works, it would be common knowledge that all agents in the special zone or those who have

the labels are conditional cooperators. Assume that the entry fee or the cost of label is

collected as tax and redistributed to everyone evenly, so that it would not directly affect the

social welfare. Observe that the unique stable matching given that all conditional cooperators

are in the special zone or having the costly label is characterized by perfectly assortative
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matching since we are back to the complete information scenario.

Let the institution decision to implement a screening scheme be denoted by zt ∈ {0, 1} at

time t. zt can be regarded as the policy variable of the institution. Rewrite W util(xt, yt) =

W util(xt, yt, zt) to reflect that it is a function of zt. We first ask the question whether the

institution wants to implement a screening mechanism to segregate the conditional coopera-

tors from the defectors. Then we examine how to set the entry fee for the special zone or the

cost for the label such that it is incentive compatible that only the conditional cooperators

would enter the special zone or purchase the label.

Lemma 3 When xt
xt+yt

< ∆τ , z∗t = 1. When xt
xt+yt

≥ ∆τ , 1) if xt
xt+yt

> ∆W := π(C,D)+π(D,C)−2π(D,D)
α

,

z∗t = 1; 2) if xt
xt+yt

< ∆W , z∗t = 0; 3) if xt
xt+yt

= ∆W , z∗t = 0 or 1.

The institution’s screening decision is depicted in Figure 4.

Figure 4: Average Utility in the Population Under Varying Levels of ∆W

Presented are the three general cases for the position of ∆W . In (a), ∆W ≤ ∆τ so screening yields a higher
average utility for all type distributions than not screening. In (b), ∆τ < ∆W < 1. In this case screening
yields a higher average utility than not screening only when xt

xt+yt
∈ (0,∆τ )∪(∆W , 1). In (c), the case where

∆W ≥ 1, screening yields a higher average utility only when xt

xt+yt
< ∆τ .

Let δ denote the entry fee for the special zone or the cost of label. Lemma 4 characterizes

the range of δ that would make the institution’s screening mechanism incentive compatible.

Lemma 4 For any δ ∈ [π(D,C)− π(D,D), π(C,C) + α− π(D,D)], z∗t = xt can be imple-

mented.

Lemma 4 shows that the institution is able to differentiate the conditional cooperators

from the non-cooperators according to its goal stated in Lemma 3.

10



Now, we can look at how institutional intervention would affect the evolution of preference

types. We make two additional assumptions before we proceed with the analysis. First,

since the end goal of the institution is to segregate the two types of agents, but not to

maximize revenue (fees collected from the agents) we believe it is reasonable to assume that

the institution would choose the minimum value of δ, 1
2
π(C,C) + 1

2
π(D,C)− π(D,D), if it

wants to implement a screening mechanism. Second, we allow the price of the membership

to the special zone or label to be discounted by parameter p ∈ [0, 1] for descendants of those

already in the special zone or label holders. Hence, the cost for descendants of the special

zone or label is only δ ∗ (1−p). When p = 1, there is no cost for descendants, they all inherit

the label or membership to the special zone. This is analogous to most cases of citizenship

where it may be costly for parents to travel to a country and gain citizenship but once there,

their progeny gain citizenship for free. When p = 0, each generation has to pay the full cost

of membership. p ∈ (0, 1) means that descendants of the special zone or label have to pay

some cost to maintain their status but not the full amount. Perhaps there are two costs

for membership: an initiation fee or transaction cost and a maintenance fee. Such a setup

can be seen from country club memberships to real estate. The descendants inherit the

membership from their parents and only have to pay the ongoing maintenance fees. Those

born without membership have to also pay the initiation fee. In this scenario, the value of

p is equal to the proportion of the initiation fee to the total cost of membership. Note that

this is equivalent to a model where p descendants inherit membership to the special zone or

label. In this case, to maintain the screening scheme at generational t > 0, the institution

only needs to collect entry fee to the special zone or the cost of label from x∗t (1− p) amount

of θ-type agents.

Proposition 2 Given the institutional intervention, τ -type dominates the population as t

approaches infinity for any initial state (x0, y0) if p is sufficiently small. On the other hand,

θ-type dominates the population as t approaches infinity for any initial state (x0, y0) if p and

α are sufficiently large.

Recall that we assume that δ = 1
2
π(C,C) + 1

2
π(D,C)− π(D,D). Therefore, which type

realizes higher material payoffs under screening depends on the relationship between p and

∆p := π(D,C)−π(C,C)
π(C,C)+π(D,C)−2π(D,D)

.

Illustrations of the average material payoffs for each type in the case where ∆W ∈ (∆τ , 1)

can be found in Figure 5. Figures of the average material payoffs for each type in the other

cases can be found in the appendix. A representation of the resulting evolutionary paths in

each case can be found in Figures 6, 7, and 8.

Proposition 2 shows that whether conditional cooperators can prevail through evolution

in the long run depends on two critical factors: 1) a sufficiently large psychological benefit
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Figure 5: Material Payoff by Type under Institutional Screening when ∆W ∈ (∆τ , 1)

In all cases, between ∆τ and ∆W there is no screening and the τ types receive a higher payoff. In (a), p > ∆p

so the θ types receive a higher material payoff than τ types under screening. In (b), p = ∆p. In this case,
material payoffs are the same for both types under screening. In (c), the case where p < ∆p, τ types receive
higher material payoffs than θ types under screening.

Figure 6: Evolutionary Paths under Institutional Screening when ∆W ∈ (∆τ , 1)

In (a), p > ∆p. If the proportion of θ types in the population is greater than ∆W then θ types will evolve to
dominate the population. Otherwise, the proportion of θ types in the population will oscillate around ∆τ .
In (b), since p = ∆p any population proportion under screening is a steady state. If xt

xt+yt
∈ [∆W ,∆τ ] then

the institution will not institute screening until the proportion of θ types falls below ∆τ . In (c), the case
where p < ∆p, τ types receive higher material payoffs than θ types under both screening and no screening
and will evolve to dominate the population.
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Figure 7: Evolutionary Paths under Institutional Screening when ∆W ≤ ∆τ

In (a), p > ∆p and the θ types will evolve to dominate. In (b), since p = ∆p any population proportion is a
steady state. In (c), the case where p < ∆p, τ types will evolve to dominate the population.

Figure 8: Evolutionary Paths under Institutional Screening when ∆W ≥ 1

In (a), p > ∆p. There is no steady state and the proportion of θ types in the population will oscillate around
∆τ . In (b), since p = ∆p any population proportion under screening is a steady state. If xt

xt+yt
∈ [∆τ , 1] then

the institution will not institute screening until the proportion of θ types falls below ∆τ . In (c), the case
where p < ∆p, τ types receive higher material payoffs than θ types under both screening and no screening
and will evolve to dominate the population.

of conditional cooperation α to make sure that the institution has a strong incentive to

differentiate the conditional cooperators from the defectors, 2) a sufficient high probability

of inheritance, which lowers the burden of future generations of conditional cooperators on
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paying the entry fee for the special zone or the label cost.

4 Conclusion

We study the evolution of conditional cooperation under incomplete information by us-

ing the indirect evolutionary approach. We introduce an institution to the society, who can

implement a screening scheme to differentiate the conditional cooperators from the non-

cooperators. A screening scheme may benefit the conditional cooperators because it allows

the conditional cooperators to match with and cooperate with other conditional cooperators.

It is also desirable from the societal perspective in the short run as it can increase social

welfare. In the long run, whether such a screening scheme can help to sustain cooperation

through populating the society with conditional cooperators depends on several factors in-

cluding the psychological benefit of conditional cooperation for the conditional cooperators

and the probability of inheritance of the special zone membership or the label.

In this paper, we consider institutional screening as a way to differentiate different agents

in the population, which can be viewed as a centralized approach. On the other hand,

costly signaling by Zahavi [1975] and Spence [1973] can serve as an alternative way from

a decentralized perspective.1 How signaling affects the evolution of conditional cooperation

in the framework of the indirect evolutionary approach would be an interesting research

question.
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A Additional Figures

Figure 9: Material Payoff by Type under Institutional Screening when ∆W ≤ ∆τ

In this case there is always screening implemented. In (a), p > ∆p so the θ types receive a higher material
payoff than τ types under screening. In (b), p = ∆p. In this case, material payoffs are the same for both
types under screening. In (c), the case where p < ∆p, τ types receive higher material payoffs than θ types
under screening.
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Figure 10: Material Payoff by Type under Institutional Screening when ∆W ≥ 1

In this case screening implemented only when xt

xt+yt
< ∆τ . Under no screening the τ types always recieve

a higher material payoff than the θ types. In (a), p > ∆p so the θ types receive a higher material payoff
than τ types under screening. In (b), p = ∆p. In this case, material payoffs are the same for both types
under screening. In (c), the case where p < ∆p, τ types receive higher material payoffs than θ types under
screening.

B Proofs

Proof of Lemma 1: First, we prove that it is a stable matching. The only potential

blocking pair is (θ, τ). However, since K(θ, τ) = 1
2
π(D,D) + 1

2
(π(C,C) + α) < K(θ, θ) =

π(C,C) + α, it is not a blocking pair. Second, we prove that it is unique. Suppose there ex-

ists another stable matching such that µθ,τ (xt, yt) > 0, then (θ, θ) is a blocking pair because

K(θ, τ) < K(θ, θ), which is a contradiction. Q.E.D.

Proof of Lemma 2: Given what player 2 would choose in the second stage of the game,

a θ-type player 1’s expected utility of choosing C is xt
xt+yt

(π(C,C) + α) + yt
xt+yt

π(C,D);

and her expected utility of choosing D is π(D,D). Hence, she chooses C if and only

if xt
xt+yt

≥ ∆θ = π(D,D)−π(C,D)
π(C,C)+α−π(C,D)

. A τ -type player 1’s expected utility of choosing C is
xt

xt+yt
π(C,C) + yt

xt+yt
π(C,D); and her expected utility of choosing D is π(D,D). Hence, she

chooses C if and only if xt
xt+yt

≥ ∆τ = π(D,D)−π(C,D)
π(C,C)−π(C,D)

. Q.E.D

Proof of Proposition 1: When xt
xt+yt

≥ ∆τ , the average material payoffs of the two types
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are given by

Fθ(xt, yt) =
xt

xt + yt
π(C,C) +

yt
xt + yt

(
1

2
π(C,D) +

1

2
π(C,C)), (7)

Fτ (xt, yt) =
xt

xt + yt
(
1

2
π(C,C) +

1

2
π(D,C)) +

yt
xt + yt

(
1

2
π(C,D) +

1

2
π(D,C)). (8)

Fθ(xt, yt) − Fτ (xt, yt) = −1
2
(π(D,C) − π(C,C)) < 0, which tells us that xt

xt+yt
is decreasing

in t.

When ∆θ ≤ xt
xt+yt

< ∆τ , the average material payoffs of the two types are given by

Fθ(xt, yt) =
xt

xt + yt
π(C,C) +

yt
xt + yt

(
1

2
π(C,D) +

1

2
π(D,D)), (9)

Fτ (xt, yt) =
xt

xt + yt
(
1

2
π(D,D) +

1

2
π(D,C)) +

yt
xt + yt

π(D,D). (10)

Fθ(xt, yt) > Fτ (xt, yt) is equivalent to xt
xt+yt

> π(D,D)−π(C,D)
2π(C,C)−π(C,D)−π(D,C)

. However, π(D,D)−π(C,D)
2π(C,C)−π(C,D)−π(D,C)

>

∆τ . Hence, Fθ(xt, yt) < Fτ (xt, yt) when xt
xt+yt

∈ [∆θ,∆τ ), which tells us that xt
xt+yt

is decreas-

ing in t.

When xt
xt+yt

< ∆θ, we must have Fθ(xt, yt) = Fτ (xt, yt) = π(D,D). Hence, xt
xt+yt

remains

a constant and the population reaches a steady state. Q.E.D.

Proof of Lemma 3: If the institution implements a screening scheme, we must have

W util(xt, yt, 1) = xt(π(C,C) + α) + ytπ(D,D).

If the institution does not implement a screening mechanism, then we calculate the

social welfare according to Lemma 2. First, suppose xt
xt+yt

< ∆θ. In this case, we have

W util(xt, yt, 0) = (xt + yt)π(D,D) < W util(xt, yt, 1). Hence, z∗t = 1.

Second, suppose xt
xt+yt

∈ [∆θ,∆τ ). In this case, we have

W util(xt, yt, 0) = xt
( xt
xt + yt

(π(C,C) + α) +
yt

xt + yt
(
1

2
π(C,D) +

1

2
π(D,D)

)
+yt

( xt
xt + yt

(
1

2
π(D,D) +

1

2
π(D,C)) +

yt
xt + yt

π(D,D)
)
. (11)

Simple calculation yields:

W util(xt, y, 1)−W util(xt, yt, 0) =
xtyt
xt + yt

(
(π(C,C) + α)− 1

2
π(C,D)− 1

2
π(D,C)

)
> 0. (12)

Hence, z∗t = 1.
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Suppose xt
xt+yt

≥ ∆τ , In this case, we have

W util(xt, yt, 0) = xt
( xt
xt + yt

(π(C,C) + α) +
yt

xt + yt
(
1

2
π(C,D) +

1

2
(π(C,C) + α))

)
+yt

( xt
xt + yt

(
1

2
π(C,C) +

1

2
π(D,C)) +

yt
xt + yt

(
1

2
π(C,D) +

1

2
π(D,C))

)
. (13)

Simple calculation yields:

W util(xt, y, 1)−W util(xt, yt, 0) = yt(
xt

xt + yt

1

2
α + π(D,D)− 1

2
(π(C,D) + π(D,C)). (14)

which can be positive or negative depending on the comparison between xt
xt+yt

and π(C,D)+π(D,C)−2π(D,D)
α

=

∆W . In sum, when xt
xt+yt

< ∆τ , the institution always wants to implement a screening scheme.

When xt
xt+yt

≥ ∆τ , whether the institution prefers a screening mechanism depends on the

value of ∆W . Q.E.D.

Proof of Lemma 4: From an ex-ante perspective, given that the agents expect that all

conditional cooperators are in the special zone or with the label, while all non-cooperators

are outside the special zone or without the label and the unique stable matching is perfectly

assortative, we need to ensure that the conditional cooperators have the incentive to pay the

entry fee or the cost of label, while the non-cooperators do not. Hence, two conditions need

to be satisfied at the same time:

π(C,C) + α− δ ≥ π(D,D); (15)
1

2
π(C,C) +

1

2
π(D,C)− δ ≤ π(D,D). (16)

They imply that δ ∈ [1
2
π(C,C) + 1

2
π(D,C) − π(D,D), π(C,C) + α − π(D,D)]. Since

π(C,C) + α > π(D,C) by assumption, the set is non-empty. Q.E.D.

Proof of Proposition 2:

i) Suppose α ≥ 1
∆τ

(π(C,D)+π(D,C)−2π(D,D)). Thus, ∆W ≤ ∆τ which means z∗t = 1

for any (xt, yt). Hence,

Fθ(xt, yt)− Fτ (xt, yt) = π(C,C)− δ(1− p)− π(D,D). (17)

When p > ∆p, we must have Fθ(xt, yt) − Fτ (xt, yt) > 0 for any (xt, yt), implying that

θ-type dominates the population as t approaches infinity for any initial condition (x0, y0).

When p < ∆p, Fθ(xt, yt) − Fτ (xt, yt) < 0 for any (xt, yt), implying that τ -type dominates
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the population as t approaches infinity for any initial condition (x0, y0). When p = ∆p,

Fθ(xt, yt)− Fτ (xt, yt) = 0 for any (xt, yt), implying that any state is a steady state.

ii) Suppose α ≤ π(C,D) + π(D,C) − 2π(D,D). Then ∆W ≥ 1 and z∗t = 1 for any
xt

xt+yt
< ∆τ , and z∗t = 0 for any xt

xt+yt
≥ ∆τ . This implies that Fθ(xt, yt)− Fτ (xt, yt) < 0 for

any xt
xt+yt

≥ ∆τ . When p > ∆p, we must have Fθ(xt, yt)− Fτ (xt, yt) > 0 for any xt
xt+yt

< ∆τ .

Hence, there is no steady state in this case. When p < ∆p, Fθ(xt, yt) − Fτ (xt, yt) < 0 for

any (xt, yt), implying that τ -type dominates the population as t approaches infinity for any

initial condition (x0, y0). When p = ∆p, Fθ(xt, yt) − Fτ (xt, yt) = 0 for any xt
xt+yt

∈ (0,∆τ ),

implying that any state such that xt
xt+yt

∈ (0,∆τ ) is a steady state.

iii) Suppose α ∈ (π(C,D) + π(D,C) − 2π(D,D), 1
∆τ

(π(C,D) + π(D,C) − 2π(D,D))).

Thus, ∆W ∈ (∆τ , 1) such that for any xt
xt+yt

∈ (∆W , 1), z∗t = 1, for any xt
xt+yt

∈ (∆τ ,∆W ),

z∗t = 0, and for xt
xt+yt

= ∆W , z∗t = 0 or 1. Also, we still have z∗t = 1 for any xt
xt+yt

< ∆τ .

When p > ∆p, we must have Fθ(xt, yt)−Fτ (xt, yt) > 0 for any xt
xt+yt

∈ (0,∆τ )∪ (∆W , 1), but

Fθ(xt, yt) − Fτ (xt, yt) < 0 for any xt
xt+yt

∈ (∆τ ,∆W ) and either Fθ(xt, yt) − Fτ (xt, yt) < 0 or

Fθ(xt, yt) − Fτ (xt, yt) > 0 when xt
xt+yt

= ∆W . Hence, θ-type dominates the population as t

approaches infinity for any initial condition (x0, y0) such that x0
x0+y0

∈ (∆W , 1). When p < ∆p,

Fθ(xt, yt)−Fτ (xt, yt) < 0 for any (xt, yt), implying that τ -type dominates the population as t

approaches infinity for any initial condition (x0, y0). When p = ∆p, Fθ(xt, yt)−Fτ (xt, yt) = 0

for any xt
xt+yt

∈ (0,∆τ )∪ (∆W , 1), implying that any state such that xt
xt+yt

∈ (0,∆τ )∪ (∆W , 1)

is a steady state. If zt = 1 when xt
xt+yt

= ∆W for all t then xt
xt+yt

= ∆W is also a steady state

when p = ∆p.

Q.E.D.

22


	Introduction
	The Model
	Basic Setup
	Evolution

	Analysis
	Complete Information
	Incomplete Information
	Institutional Screening

	Conclusion
	Additional Figures
	Proofs

